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Abstract

Version 14 of XtalOpt, evolutionary multi-objective global optimization algorithm for crystal structure
prediction, is now available for download from its official website https://xtalopt.github.io. The new
version of the code is designed to perform ground state search for novel crystal structures with variable
composition by integrating a suite of ab initio methods alongside classical and machine-learning potentials
for structural relaxation. The multi-objective search framework has been further enhanced through the
introduction of Pareto optimization, enabling efficient discovery of functional materials. Here, we describe
the implemented methodologies, provide detailed instructions for their use, and present an overview of
additional improvements included in XtalOpt version 14.

1 Introduction

Previous versions of XtalOpt [1, 2], available in both command-line interface (CLI) and graphical user
interface (GUI) modes, performed evolutionary search on a chemical system specified by its reduced empirical
formula, e.g.,

empiricalFormula = Ti1O2

over an optionally determined list of formula units, e.g.,

formulaUnits = 1-4

This resulted in a search over a “fixed chemical composition”. In this search, the initial set of structures
are generated from the specified supercells of the given empirical formula. Then, the new structures are
produced with the size and composition matching that of the initial list, by applying genetic operations to
the selected structures from the parent pool.

In this workflow, (i) the selection of the parent structure(s) is based on the fitness of structure, (ii) the
fitness of a structure is determined from the normalized relative enthalpies (for a single-objective search) and
-possibly- normalized relative value of user-defined objectives (in a multi-objective) search, (ii) the genetic
operations include: “crossover” where two parent structure are mixed to generate an offspring with the same
composition, and “stripple” and “permustrain” mutations that generate a new structure by applying random
distortions to a selected parent structure.

In the new version of XtalOpt (version 14), briefly,

• Besides the generalized fitness function, the “Pareto optimization” scheme is implemented,

• Instead of directly using the enthalpy to measure the structure fitness, the “distance above the convex
hull” is used,
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• The genetic operation “crossover” is generalized and new evolutionary operations are introduced to
allow for the generation of structures with new stoichiometries, and

• It is possible to conduct the search over multiple compositions, or to generate new structures with
compositions that are not listed in the input set of compositions.

2 Input chemical formulas

In the new version of XtalOpt, introducing the chemical system and -optionally- desired formula units is
different than the previous versions: (i) the “empiricalFormula” and “formulaUnits” pair of flags are removed,
and (ii) the chemical system is now entirely specified by the entries of a single input flag “chemicalFormulas”.

Generally, an input entry for “chemicalFormulas”:

1. Is interpreted as the “explicit” formula of the simulation unit cell (instead of the reduced empirical
formula), and

2. Must include the “full chemical formula” (i.e., combination of element symbols and corresponding atom
counts, e.g., “Ti1O4” instead of “TiO4”).

That is to say that the input:

chemicalFormulas = Ti4O8

instructs XtalOpt to search in Ti-O system with “1:2” composition, while all generated unit cells have four
Ti atoms and eight O atoms.

Various “formula units” of a chemical system can be introduced using a comma-delimited list of full chemical
formulas, e.g.,

chemicalFormulas = Ti1O2, Ti2O4, Ti3O6, Ti4O8, Ti8O16

Besides explicitly listing various formula units in the chemical formulas input, they can also be combined
into a hyphen-separated list of formulas in the form of a “formula1 - formula2” entry. In such an entry, both
ends must be full chemical formulas of the same composition, while the “formula2” is a proper supercell of
the “formula1”. That’s, the number of atoms of each element type in “formula2” are a fixed integer multiple
of those in “formula1” (e.g., “A3-A7” does not work, while “A3-A6” is accepted).

As an example, the above input can be specified using a hyphen-separated entry as follows:

chemicalFormulas = Ti1O2 - Ti4O8, Ti8O16

For comparison, the above input is corresponding to specifying the pair of “empiricalFormula = Ti1O2” and
“formulaUnits = 1-4, 8” input flags in the previous versions of code.

The “chemicalFormulas” parameter not only determine the initial cell(s) to be generated in the first gener-
ation, it also has an important role in specifying what type of the evolutionary search should be conducted;
as detailed in the next section.

3 Various types of evolutionary searches

Generally, the overall search workflow of the new version of XtalOpt is similar to the previous versions:
initial set of structures are generated from the compositions and cell sizes specified in the input, and the
genetic operations are applied to the selected parents from the pool to produce offspring. However, now, the
details and outcome of the genetic operations are different. That’s, depending on the search type, the size
and composition of the offspring produced by genetic operations can be different than that of their parent
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structure(s) or the input chemical formula list. The search type is determined by the details of the input
formulas list and a set of new flags, as follows.

3.1 Fixed-composition search

In the simplest case, if all the input formulas are from the same composition, the search is a “fixed-
composition” (FC) evolutionary search, where the offspring have their composition match that of their
parent structure(s) (i.e., initial list). This is essentially the traditional search performed by previous versions
of XtalOpt.

3.2 Multi-composition search

In the new version of XtalOpt, on the other hand, the initial list of chemical formulas can also include a
combination of different compositions, e.g.,

chemicalFormulas = Ti2O3, Ti1O2 - Ti4O8, Ti5O3, Ti1 O1 - Ti5O5

This input instructs XtalOpt to perform a “multi-composition” (MC) search. This type of search is similar
to the FC search in that initial set of structures are generated as usual and subsequent cells generated in
the search are forced to have a composition matching that of “one of their parent structure(s)”. Since the
initial list now covers various compositions, however, the parent structure(s) can be chosen from different
compositions. This extends “desired” motifs found in one composition to other ones, potentially speeding
up the search in finding best candidate structures for various compositions.

3.3 Variable-composition search

Regardless of whether the input formulas include one or more compositions, if the input flag

vcSearch = true

is specified, after the first generation is produced as usual and according to the input formulas list, genetic
operation crossover is now allowed to produce cells with new compositions that are not necessarily match
their parent structures’ composition or even those listed among the initial chemical formulas. This is called
a “variable-composition” (VC) search: the most general type of evolutionary search conducted by XtalOpt

where the entire chemical system of the specified elements is explored to find (meta)stable phases of various
compositions.

4 Maximum number of atoms

The new version of code allows for generating structures of new composition (hence, various number of
atoms in the cell) and random supercells (discussed below). In order to control the computational cost of
the search, a new input parameter, “maxAtoms”, is introduced that sets the maximum number of atoms in
the generated unit cells during the search.

During the search, a new structure in the VC search or a random supercell will be generated only if the total
number of atoms in the final cell complies with the set limit.

The default value for maximum number of atoms is 20. However, and regardless of being specified in the
input or having its default value, if any entry in the input chemical formulas list has a larger total number of
atoms, XtalOpt will re-adjust this parameter automatically to match the largest cell size in the input. The
user can also modify this at the run time.
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5 Genetic operations

XtalOpt uses various genetic operations to produce new structures from selected parent structure(s). In
previous versions, the defined operations included crossover, stripple, and permustrain. Each operation
would be chosen based on their user-defined “percent chance”. The specified chances for all operations, each
an integer in the [0,100] range, must sum to 100.

In the new version of the code, two new genetic operations (applicable only to the VC search) and a new
random mutation (relevant to all types of evolutionary searches), are introduced. Moreover, the input entries
for chances of choosing genetic operations and the interpretation of their values are changed, as follows.

5.1 New genetic operation: permutomic

Applicable only to a VC search, a new evolutionary operation, “permutomic”, is introduced that randomly
adds (removes) an atom to (from) a structure chosen from the parent pool. For such a search, the user
should provide a probability for performing this operation in the input, which is adjustable during the run.

5.2 New genetic operation: permucomp

Also applicable only to a VC search, the new genetic operation “permucomp” is introduced that randomly
creates a random new composition with a randomly chosen total number of atoms (up to “maxAtoms”
parameter).

It should be noted that this random mutation is primarily designed to diversity the structures pool in long
searches over multiple elements. With a limited chance of resulting in an energetically favorable structure,
ideally it should be assigned a relatively small probability compared to other genetic operations.

5.3 Chances of performing the genetic operations

In the new version of XtalOpt, instead of “percent chance” for applying genetic operations, the probability
of choosing the genetic operations should be specified by a “relative weight”.

In the CLI input, and instead of using “percentChances...” flags, this can be done using the set of flags:

weightCrossover

weightStripple

weightPermustrain

weightPermutomic

weightPermucomp

Weight for each operation should be zero or a positive integer (arbitrary otherwise) that can also be modified
during the run, with no specific condition for their total value.

During the search and at the time of applying genetic operations, assuming that the set of relative weights of
the genetic operations are given by {Pi}; XtalOpt determines the percent chance of applying the jth genetic
operation, Cj , from:

Cj = 100 × Pj∑
i = all relevant operations

Pi

The sum over relative weights includes genetic operations relevant to the search: for a VC search it includes
all five genetic operations, while for a non-VC search the weights of permutomic and permucomp are ignored
and their chances are considered zero.
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Input Flag Default value Percent chance (VC) Percent chance (FC/MC)

weightCrossover 35 33% 40%

weightStripple 25 24% 30%

weightPermustrain 25 24% 30%

weightPermutomic 15 14% 0%

weightPermucomp 5 5 % 0%

Table 1: Input flags to specify the relative weight of various genetic operations, with their default values.
The actual percentage chances of applying a genetic operation, depending on the search type, is listed in the
last columns.

The default values for relative operation weights, and the corresponding runtime -approximate- percent
chance for various search types are summarized in the Table 1.

If all the relevant genetic operations for a specific type of search have zero weight in the input file, XtalOpt
will use an equal proabibility for applying the genetic operations while a warning message is printed in the
run output.

5.4 Random mutation: supercell generation

Although not a genetic operation per se, user can optionally define a finite probability as a precent chances
(in the [0, 100] range), by which the structure generated from “any” of the existing genetic operations will
be expanded to a supercell. This probability is zero by default, and can be set using the input flag:

randomSuperCell = 0

If this flag is specified by a non-zero value, the expansion factor will be chosen by XtalOpt randomly, as
a set of three integers, such that the supercell has up to “maxAtoms” total atoms in the cell. Further, a
randomly chosen atom in the supercell is displaced randomly, subject to the minimum interatomic distances
settings.

6 Reference energies

As of version 14, XtalOpt uses “distance above convex hull” as the target value for energy optimization. The
calculation of the convex hull (performed using the Qhull library [3]), requires defining reference energies.
By default, the code uses “0.0” as the “elemental reference energies”. Correct convex hull for MC and VC
searches, however, needs correct reference energies to be specified.

The user can define reference energies in the input through a comma-delimited list in which each entry
includes a full chemical formula followed by the corresponding total energy, e.g., for Ti-O system:

referenceEnergies = O1 -2.53, Ti4 -17.65

The energies introduced in the input must have the same units as is being used by the local optimizer, in
order to produce the correct results.

Further, for any system, the user can introduce reference energies of not only elements but for relevant
multi-element (sub)systems; if they are needed for calculating the correct convex hull.

For example, for O-Ti-N system, this can be a valid entry:

referenceEnergies = O2 -5.06, Ti2 -8.825, N1 -3, O1Ti1 -6.32, O2N5 -12.7, Ti1N2O1 -5.80

It should be noted that if any reference energy is introduced, for consistency, “all elemental reference energies”
must be specified. Otherwise XtalOpt issues an error message and quits.
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7 Pareto optimization and parent selection

In the previous release of XtalOpt, the multi-objective optimization feature was implemented to facilitate
the search for functional materials by introducing a basic generalized fitness function as the weighted sum
of normalized values of objectives. Regardless of the number of objectives, by default, XtalOpt employs
this scalar fitness function for global optimization (i.e., “Basic” optimization). However, the new version of
the code is further extended by including the Pareto optimization as an additional optimization scheme, in
principle applicable to both single- and multi-objective searches. The user can instruct the code to utilize
the Pareto optimization through the input flag:

optimizationType = Pareto # default is Basic

For Pareto optimization, XtalOpt uses the NSGA-II algorithm [4] in which the Pareto front (rank) and
crowding distances of the structures in the parents pool are employed to select a new parent through a
“binary tournament selection”.

The workflow of selecting a new parent structure in Pareto optimization includes: (i) performing a standard
non-dominated sorting to identify the Pareto front (rank) of all candidate structures, (ii) calculating crowding
distances for structures in each front, (iii) randomly selecting a pair of structures from the pool, and (iv)
choosing the parent structure from the selected pair as the one that has a better rank, or a greater crowding
distance if both belong to the same Pareto front. For structures of similar rank and crowding distance, the
selection is made randomly.

It should be noted that since XtalOpt is a “population-based” algorithm, the parent pool includes all
successfully optimized structures, hence, elitism in the Pareto optimization is automatically maintained.
Nevertheless, the tournament selection is made within the entire population of locally optimized structures;
unlike the scalar fitness (basic) scheme where a limited subset of “top” candidate structures (i.e., equal to
the parent pool size specified by the user) are considered for randomly selecting a parent structure. The
user, however, has the option to restrict the tournament selection to the user-specified pool size by the flag:

restrictedPool = true # default is false

If the parent pool is restricted for tournament selection in Pareto optimization, the code will sort the
structures in the entire pool according to their rank (and then crowding distances within each rank), and
select the “top” candidates such that there will be as many as the user-specified parent pool size structure
from which the tournament selection is performed.

Besides the tournament selection, XtalOpt provides another parent selection option within the Pareto op-
timization. That’s, to use the obtained rank and crowding distances of the structures to calculate a scalar
fitness, and make the parent selection based on this measure from the top candidate structures, similar to
the case of “Basic” optimization. This can be invoked by using the flag:

tournamentSelection = false # default is true for Pareto optimization

The Pareto-based fitness value relies on the calculated rank of structure, r, which is a value in the [0, N − 1]
range , where N is the total number of Pareto fronts and r = 0 corresponds to the global Pareto front. Using
the obtained ranks, solutions of each front are assigned a raw fitness value of

f0
r =

N − r

N
(1)

that is corresponding to a fitness of 1 for structures on the global Pareto front and 1
N for those on the last

Pareto front. Next, the calculated crowding distances of structures in each front are scaled to the [0.1, 1]
range, where the non-zero lower limit is chosen to eliminate the overlap between solutions of two successive
fronts.
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Finally, the Pareto-based fitness for the ith structure in the rth Pareto front with a scaled crowding distance
of dr,i is calculated using the following formula:

fr,i = f0
r −

(
1 − dr,i

N

)
≡ f0

r+1 +
dr,i
N

(2)

The above procedure is designed to: (i) ensure the rank-precedence by introducing a gap of at least 0.1
N

between the “worst” solution of rank r and the “best” solution of the rank r + 1, (ii) diversify the selection
pool by prioritizing more unique candidate structures in each rank through applying the crowding distance
values, and (iii) obtain a scalar fitness value in the range of [0, 1].

As outlined above, by default, XtalOpt applies crowding distances in Pareto optimization in both tournament
selection and Pareto-based fitness calculation. This can be modified by specifying the input flag:

crowdingDistance = false # default is true

which results in performing tournament selection only based on structure ranks, or calculating Pareto-based
scalar fitness with dr,i = 1 for all structures, i.e., the raw fitness values obtained from Eq. 1.

It is important to note that especially the outcome of non-dominated sorting is sensistive to the numerical
precision of the objective values. Although XtalOpt does not manipulate the calculated values of objectives, it
provides the user with the option to apply a desired precision to the objective values, prior to parent selection
process. A user-specified number of decimal digits will be retained for objective values as determined using
the flag:

objectivePrecision = 6 # default is -1

where the default value of −1 implies not rounding the objective values.

For a multi-objective search in the previous version of XtalOpt, specifying the objective weight and output
file name for the executable script was optional in the CLI mode. In the new version of code, these fields
are all mandatory. That’s, all four input entries for an objective must be given in the below order:

objective = objective_type executable_script_path output_filename weight

Further, the weight for a “Filtration” objective must be set to zero in the input.

It should be noted that:

• While the weights are not used for the Pareto optimization, they must be always specified since the
user has the option to change the optimization type at the runtime (“Pareto” to “Basic, and vice
versa), and

• Just similar to the previous workflow, any minimizable/maximizable objective with the weight of zero,
will be calculated but will not be considered in the scalar fitness for the basic optimization.

8 Volume limits

In the previous versions of XtalOpt, the volume of the unit cell could be constrained through either absolute
minimum and maximum limits (in Å3 per formula unit) or the scaled volume limits.

In the new version of the code, the absolute volume limits are read in the “Å3 per atom” units and the
corresponding flags are renamed to:

minVolume

maxVolume
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Also, the pair of flags for introducing the scaled volume limits are renamed to:

minVolumeScale

maxVolumeScale

It should be noted that, however, to be consist with minimum atomic radii settings, the scaled volume limits
in the new version of XtalOpt are considered as factors of spheres with “covalent” radii of atoms (unlike the
previous version, in which the spheres of van der Waals radius were used to obtain the volume limits). As a
result, conversion from old scaled volume input values to the new ones would require a factor of ∼1.5.

Moreover, in the new version of XtalOpt, the user has the option to define volume limits for elements. This
setting will take effect only if the limits are defined for all elements in the chemical system, which can be
done through specifying a list of comma-delimited entries. Each entry includes a full chemical formula for
the elemental unit cell followed by the corresponding volume limits (minimum and maximum, respectively)
in Å3 units, e.g.,

elementalVolumes = O1 20 40 , Ti2 50 100

Generally, the volume constrains are used in XtalOpt in the following order:

1. If elemental volumes are given (properly), they are used first,

2. If scaled factors are given (properly), they are used,

3. If explicit volume limits (per atom) are given, they are used,

4. If none of the above, the default absolute volume limits (1 and 100 Å3 per atom) are used.

9 Similarity check

In the previous versions of the code the structures were examined after optimization to detect similar
structures and exclude them from the parents pool to prevent the search from being biased by a specific
structural motif. This process was called “duplicate check” and such structures were labeled as “duplicate” in
the output files. Checking the population for detecting the type of structures were done using the XtalComp

library [5]. In the new version, there are changes regarding this process, as follows.

9.1 Similarity or duplicate check?

Since the output of the XtalComp analysis depends on the specified tolerances, two structures which are
marked as duplicate might not be an exact match structure-wise. In fact, for the purpose of evolutionary
search, the important criterion for curating the parents pool is the “close similarity” of structures, and not
necessarily an exact match. In the new version of the code the name for this process is changed to “similarity
check”, and the structures detected in this process are labeled as such in the output. For instance, a label
of “Sim(2×10)” for the status of a structure in the “results.txt” file means that this structure is similar to
the structure “2×10”, within the given tolerances for similarity check.

9.2 A new similarity check option

As of XtalOpt version 14, besides the XtalComp, the user can instruct the code to use the radial distribu-
tion function (RDF) of species-resolved bonds to detect similarities between structures. The implemented
methodology is similar to that of introduced in the MAISE code [6].

This functionality is controlled by a numerical value, in the [0,1] range, set by the input flag:

rdfTolerance = 0.95
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If the user specifies a value greater than zero for the RDF tolerance, XtalOpt will use RDF similarity check
instead of XtalComp. That’s, it calculates the scalar product of normalized RDF vector of structures, and
those which have a value larger than the specified tolerance will be marked as similar.

By default, the RDF tolerance is set to zero; hence XtalComp is being used for similarity check.

The details of RDF vector calculations depend on a set of parameters, i.e.,

• Cutoff value for the included bond length (in Å),

• Spread of Gaussian function used for smoothing the bond length distribution (in Å),

• Number of bins (over the bond length range of [0, cutoff]) for sampling the distribution.

These settings can be specified and adjusted during the run by the user. In the CLI mode, this can be done
through the following input flags (with their default values):

rdfCutoff = 6.0

rdfSigma = 0.008

rdfNumBins = 3000

10 Seed structures

In the previous versions of XtalOpt, the seed structures, with the same composition of the reference chemical
system of the search, could be introduced using a space-separated list. Now, for consistency, this should be
a comma-delimited list of entries, e.g.,

seedStructures = /path1/POSCAR1 , /path2/POSCAR2

Moreover, the new version of XtalOpt allows for introducing seed structures that are a “sub-system” of the
reference chemical system, or have a composition that is not listed in the input formulas list. That’s, e.g.,
adding binary or elemental structures in a search for a ternary system. These “off-composition” seeds will
be read in as long as they do not include any element which is not in the reference chemical system.

The off-composition seed structures will be included in the parents pool upon successful local optimization,
and will participate in the genetic operations if selected as a parent structure depending on their fitness
value. This particular feature is useful as instead of specifying reference energies, the user has the option to
directly introduce “reference structures” as seed. This helps to ensure that the obtained reference energies
are consistent with the local optimization settings of the search. This option, however, should be utilized
carefully since if the external code fails to optimize the reference structures, calculated convex hull will not
produce the correct distance above hull values.

It should be noted that as the stripple and permustrain operations are not designed to manipulate the parent
structure’s composition, regardless of the specified genetic operation weights, an off-composition structure
can be subject to crossover (for all search types) and permutomic and permucomp (for a VC search). For
these structures, if the weight of the applicable genetic operations are zero, the crossover operation is chosen
as the fallback option, while a warning message is printed in the run output to notify the user.

11 Construction of molecular units

For a MC or VC search, it is possible to use molecular units in building the unit cells just similar to the
previous versions of the code (i.e., the case of FC search in the new version).

It should be noted that, however, in the new version of XtalOpt and regardless of the search type, the
number of atoms of each type which can participate in construction of molecular units are limited to the
smallest number of atoms of that type in the input list of chemical formulas.
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For instance, given the following input:

chemicalFormulas = Ti2O4 - Ti4O8, Ti5O3

then up to 2 and 3 atoms of Ti and O, respectively, can be used in the construction of molecular units.

12 Interface to machine-learning interatomic potentials

While there are a set of optimizers that are explicitly supported by XtalOpt, the output of an arbitrary
optimizer (e.g., a machine learning interatomic potential) can be easily converted to that of a supported
optimizer, using simple scripting. For instance, if the user sets the optimizer type to VASP while using an
arbitrary code to perform local optimizations, the job file for the XtalOpt run would include the following
steps: (i) converting VASP structure file (POSCAR) to the appropriate format for the user’s code, (ii)
perform the local optimization, and (iii) extract the results from the user’s code and write VASP format
output (i.e., OUTCAR and CONTCAR) files.

Such a workflow allows to benefit from the considerable speed-up that is offered by the machine learning
potentials in a XtalOpt run. This is especially helpful in a VC search for multi-element systems where
the entire composition space of the compound should be explored, involving possibly thousands of local
optimizations, which is computationally prohibitive using first-principles approaches.

An easy-to-use Python script, vasp uip.py, is included in the new release of the XtalOpt to facilitate such
calculations. This wrapper, uses two of the recently developed universal interatomic potentials (UIPs),
MACE [7] and CHGNet [8], to perform local structure optimization using the Atomic Simulation Environment
(ASE) library [9]. The input/output format is that of VASP code, i.e., the script reads in a POSCAR file
and produces a CONTCAR and a minimal OUTCAR file, which follows the VASP format for the outputted
entries.

The local optimization specifications and other run parameters of this script can be adjusted through a series
of command line options. A full list of available options can be obtained by:

python3 vasp_uip.py -h

and a simple energy, force, stress calculation can be performed with this script as:

python3 vasp_uip.py

given that a POSCAR file exists at the working directory and required libraries are accessible through the
invoked python binary.

With the above-mentioned input and output file formats, this script is designed to be used in the XtalOpt

runs as a VASP optimizer, allowing for efficient ground state search for a desired chemical system. It should
be noted that the implemented potentials are chosen as prototypes of the increasingly popular UIPs, and
extending the script to support other similar platforms is straightforward.

13 Miscellaneous

13.1 Input entry conventions

In a CLI run, various search settings are provided by the user in the input file, through entries of pre-defined
flags. While most flags require a single value as the input entry, sometimes an entry is expected to include
multiple parameters (e.g., “objective” flag). There are also input flags that can parse multiple entries, while
the entries might or might not involve multiple parameters (e.g., “elementalVolumes” and “seedStructures”
flags).
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In general, and for consistency, the input pattern for the CLI flags are designed with the following conventions:

• When input involves multiple entries, they should be a list of “comma-delimited” entries:

seedStructures = structure1 , structure2

• In the case that a flag requires a single entry, and that entry has multiple parameters, the parameters
should be a list of “space-separated” values, e.g., specification of an objective (which requires four
parameters):

objective = fil /bin/script output.txt 0.0

• If a flag accepts multiple entries that are multi-parameter, combining the above rules, the input should
be a comma-delimited list of space-separated parameters, e.g., specifying volumes for multiple elements
(with three parameters for each elemental entry):

elementalVolumes = Ti1 20 35, O1 15 25

The GUI input fields for chemical formulas, reference energies, and elemental volumes should be initialized
with input strings of the above format.

13.2 Output files

In XtalOpt 14, a new file hull.txt is being created in the local run directory that includes the composition
(atom counts of various elements), total enthalpy, and the calculated distance above hull for successfully
optimized structures. Also included in this file is the Pareto front index, creation index, and the unique tag
(generation and id) of structures.

Moreover, except than results.txt and xtalopt.state, the other run output file names (produced in the
local run directory) are changed in the new version of the code, as listed in the Table 2.

Old filename New filename

xtalopt-runtime-options.txt cli-runtime-options.txt

xtaloptSettings.log settings.log

xtaloptDebug.log output.log

Table 2: Old and new names of output files in an XtalOpt run.

13.3 Verbose output

In the previous version of XtalOpt, if the code was compiled with the cmake flag

-DXTALOPT_DEBUG=ON

the output of the run would include a more extensive set of information, and this output would be saved to
disk as the “xtaloptDebug.log” file (for both the CLI and GUI modes). In the new version, for simplicity
and regardless of the compilation flag, the standard output of a CLI run will include all the additional
information (e.g., details of hull and fitness calculations, calculated dot product of the RDF vectors, etc.)
by setting the input flag:

verboseOutput = true # default is false

This parameter has a default value of “false”, can be modified during the run, and the output produced by
this setting appears with a small indentation in the run output.
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In the GUI mode, this option is available as a check box in the “Progress” tab (Figure 1c). However, and
similar to the previous version, the output.log file (that may or may not include the debug-type additional
information) will be produced only if the code is compiled with the above cmake flag. As a result, and
depending on the compilation type, this option in the GUI can be either selectable or deactivated.

13.4 Convex hull snapshots

In the CLI mode, if the following flag is set:

saveHullSnapshot = true # default is false

after each successful local optimization a snapshot of the hull data (i.e., a copy of the “hull.txt” file) will be
saved in the local working directory under the folder “movie” as a file named YYMMDD HHmmSS LLL where: YY
(year), MM (month), DD (day), HH (hour), mm (minute), SS (seconds), and LLL (milliseconds) represent
a unique and ordered identifier of when the file is written.

This option is specifically designed to facilitate monitoring the run progress, e.g., by creating movies of the
convex hull evolution during the run.

In the GUI mode, the same option is available as the “Save hull snapshots” check box under the “Search
Settings” tab.

13.5 Legacy AFLOW-hardness optimization

The explicit support for AFLOW [10] hardness as an objective is removed. AFLOW hardness can still be
used as an objective, just similar to any objective that should be maximized, using an interface executable
script.

13.6 Backward compatibility

The new version of XtalOpt (version 14) does not read in the inupt file (“xtalopt.in”) of previous versions
due to various changes in the required input flags, and does not resume a run that was performed with an
older version of the code.
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Appendix A New implementation in the GUI

The GUI of XtalOpt version 14 supports all the above mentioned developments. Generally, the format of the
relevant input entries (e.g., chemical formulas, reference energies, elemental volumes) has the same format
as those used in the CLI mode.

The GUI of the new version of code is redesigned to accommodate the new implementation. In particular,
the “Structure Limits” and “Search Settings” tabs host the majority of the new settings, while the “Multi-
objective Search” tab has a new section (“Optimization”) where the user can choose the optimization type
and adjust the relevant settings. Also, the GUI now includes a new “About” tab that offers some basic
information and web links about the code. Figure 1 illustrate a few of tabs in the new GUI, with the changes
relevant to the new implementation highlighted.

(a) The “Structure Limits” tab. (b) The “Search Settings” tab.

(c) The “Multiobjective Search” tab. (d) The “Progress” tab.

Figure 1: GUI tabs in XtalOpt version 14.
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Appendix B Summary of the new, modified, and obsolete CLI
flags

New flag Comments (and *default values, if any) Runtime adjustable

chemicalFormulas Required input flag: composition of initial generation No

vcSearch Logical: perform variable-composition search (*false) No

maxAtoms Maximum unit cell size generated in the search (*20) Yes

referenceEnergies In local optimizer’s units No

weightPermutomic Relative weight of applying permutomic (applies only if vcSearch=true) Yes

weightPermucomp Relative weight of applying permucomp (applies only if vcSearch=true) Yes

randomSuperCell A number in [0, 100] (*0) Yes

optimizationType Optimization scheme: Basic or Pareto (*Basic) Yes

tournamentSelection Logical: use tournament selection in Pareto optimization (*true) Yes

restrictedPool Logical: restrict the tournament selection to top structures (*false) Yes

crowdingDistance Logical: apply crowding distances in Pareto optimization (*true) Yes

objectivePrecision Number of decimal digits in objective values for optimization (*-1) Yes

elementalVolumes In Å3 units Yes

rdfTolerance Threshold for similarity in [0.0, 1.0] (*0.0) Yes

rdfCutoff Maximum bond length considered in Å (*6.0) Yes

rdfSigma Spread of Gaussian in Å (*0.008) Yes

rdfNumBins Number of bins (*3000) Yes

saveHullSnapshots Logical: save snapshots of hull data (*false) Yes

verboseOutput Logical: produce extra information in the run output (*false) Yes

user1 Custom user-defined keyword No

user2 Custom user-defined keyword No

user3 Custom user-defined keyword No

user4 Custom user-defined keyword No

Old flag Renamed/changed flag Comments Runtime adjustable

popSize parentsPoolSize Yes

volumeMin minVolume Value should be in Å3 per atom Yes

volumeMax maxVolume Value should be in Å3 per atom Yes

volumeScaleMin minVolumeScale Factor of “covalent” sphere Yes

volumeScaleMax maxVolumeScale Factor of “covalent” sphere Yes

percentChanceCrossover weightCrossover Relative weight of applying operation Yes

percentChanceStripple weightStripple Relative weight of applying operation Yes

percentChancePermustrain weightPermustrain Relative weight of applying operation Yes

objective All entries are necessary No

seedStructures A comma-delimited list No

14



Obsolete flag Comments

empiricalFormula Replaced with “chemicalFormulas” flag

formulaUnits Merged into “chemicalFormulas” flag

usingFormulaUnitCrossovers Now it is performed by default

usingOneGenePool Now it is performed by default

usingSubcellMitosis

usingMitoticGrowth

chanceOfFutureMitosis

mitosisDivisions

mitosisA

mitosisB

mitosisC

printSubcell
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