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Abstract

The implementation and testing of XtalOpt, an evolutionary algorithm for crystal structure prediction, is outlined. We present our
new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators,
which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration
of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A
continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms,
is employed. Various parameters in XtalOpt are optimized using a novel benchmarking scheme. XtalOpt is available under the
GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use,
intuitive graphical interface.
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1. Introduction

Over twenty years ago, John Maddox provocatively stated
that the inability to predict the structure of a solid from its sto-
ichiometry is a “scandal in the physical sciences,” presenting a
challenge to the chemistry, physics, and materials science com-
munities [1]. Two decades later, crystal structure prediction re-
mains exceedingly difficult. The difficulty stems from the com-
plexity of the potential energy landscape of a solid, which de-
pends on many variables: six unit cell parameters, plus three
coordinates for each atom. Moreover, it may not be known how
many atoms comprise the primitive unit cell. In order to deter-
mine the global (and ideally, all the local) minima, one requires
a method which effectively samples the highly–dimensional pa-
rameter space of the extended system, while simultaneously fo-
cusing in on the most promising areas.

One way to predict structures is by using chemical intuition
[2, 3]. However, in certain situations one may have insuffi-
cient empirical experience to make reasonable predictions. For
example, consider the realm of high pressures, or compounds
with unusual stoichiometries [4]. In these situations it may be
prudent to resort to automated search techniques, the results
of which can help to develop intuition in such unfamiliar cir-
cumstances. Performing local optimizations of randomly gen-
erated structures has shown success [5], but this technique is
best suited to smaller systems since the probability of generat-
ing the global minimum decreases rapidly as the cell size grows.
Simulated annealing [6], minima hopping [7], and metadynam-
ics [8] are three promising search methods, but require a start-
ing structure that is close to the target structure. They are very
useful if the system is characterized reasonably well, but what
if the structure is wholly unknown?
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Genetic or evolutionary algorithms (GA/EAs) are stochas-
tic search techniques that have been applied successfully in ar-
eas ranging from materials design and processing to molecular
biology [10]. GAs/EAs have been extensively employed for
predicting the structures of both molecules and clusters [11–
17], as well as for extended systems [9, 18–28], surfaces [29],
and even grain boundaries [30]. They draw upon concepts from
biological evolution (i.e. survival of the fittest, crossover, trait
propagation, mutation) to locate the global minimum of a sys-
tem. These algorithms sample the multidimensional landscape
of a system, while simultaneously focusing the search on the
valleys. When applied to extended chemical systems, they re-
quire only the chemical composition as input (fulfilling Mad-
dox’s foremost request). The first successful application of this
technique to crystal structures was performed by Woodley, Cat-
low, and Battle in 1995, in which the previously unknown struc-
ture of Li3RuO4 was discovered by their algorithm[18].

When applying a GA/EA to a specific problem, i.e. a crys-
tal structure search, it is often illustrative to employ vocabulary
taken from evolutionary theory. In the following sections we
will refer to a particular candidate structure as an individual
and the set of all structures generated in a single iteration of the
algorithm as the generation. The union of all generations forms
the population. The modification of an individual (a parent) to
form a new structure is called procreation, and can occur via
mutations (one parent) or breeding (two parents). The new
structure is that parent’s offspring. The subset of the popula-
tion that is deemed fit for parenthood is referred to as the breed-
ing pool, or just pool. Finally, each member of the population
should occupy a unique niche to reduce the redundancy in the
search.

Herein, a detailed description of XtalOpt, a new open-source
evolutionary algorithm for crystal structure prediction, is pro-
vided. Computational details concerning licensing, implemen-
tation, compatible local optimizers, and GULP potentials used
in the tests are found in Section 2. Details of XtalOpt’s im-
plementation and operation are provided in Section 3. This in-
cludes our choice of evolutionary operators, selection methods,
workflow, niching techniques, and description of how to re-
strict the global minimization process to a reasonable parameter
space. A unique “ripple” operator and XtalOpt’s hybrid oper-
ator approach is presented in Section 3.2. Section 4 describes
a newly proposed benchmarking technique and contains the re-
sults of a step-by-step parametrization of XtalOpt using a 16
formula unit TiO2 supercell, as well as a set of validating tests
performed on a more challenging 10×SrTiO3 super cell. Re-
sults on NaH at normal pressure, and near the pressure induced
structural phase transition are also provided. In Appendix A,
one can find a brief tutorial of how to use XtalOpt.

2. Computational Details

2.1. Implementation
XtalOpt is written as an extension to the Avogadro[31]

molecular editor and makes use of the OpenBabel[32, 33] C++

chemical toolkit. SPGLIB[34] is included for spacegroup iden-
tification. XtalOpt and its direct dependencies are available

under the GNU Public License[35] (GPL), which allows free
access to obtain, change, and improve the code. Users may also
redistribute it as they see fit (the only restrictions imposed by
the GPL is that modified versions be released under a similar
license and that copyright information remains intact). The au-
thors hope that the availability of this codebase will facilitate
those interested in using and/or developing evolutionary algo-
rithm approaches to the crystal structure problem. Furthermore,
XtalOpt is interfaced with PWSCF, licensed under the GPL,
and GULP, which is free for academic use. The VASP opti-
mizer is also supported due to its popularity, but it is not free
software. More details on these optimizers can be found in the
next section.

The code for XtalOpt can be obtained free of charge or reg-
istration at http://xtalopt.openmolecules.net, or from the CPC
library. It is written in C++ and uses TrollTech’s Qt[36] li-
braries to provide the interface.

2.2. Supported Optimizers

XtalOpt currently supports three external codes that can be
used to perform the local optimizations: VASP[37–40], PWSCF[41],
and GULP[42–44]. The first two are first–principles, plane–
wave programs, whereas the latter employs empirical potentials
for discrete and extended systems. Examples of template inputs
for each code are available on http://xtalopt.openmolecules.net
and may also be obtained from the CPC Library.

2.3. Empirical Potentials

A 16 formula unit supercell of TiO2 was chosen to parametrize
XtalOpt in Section 4. This decision was based on the availabil-
ity of an established and tested potential [27], the speed of the
GULP optimizer, and historical use of TiO2 as a test case for
crystallographic evolutionary algorithms[19, 27].

The GULP potential for TiO2 comes from Woodley and
Catlow[27], where a combination of Buckingham and Lennard-
Jones potential functions describe the interactions of the system
such that

V(r) = Ae−
r
D + Br−12 −Cr−6. (1)

The parameters A, B, C, and D are dependent on the species in
the interaction, and are provided in Table 1. This potential is
combined with a Coulombic interaction term using charges of
2.196e for titanium and -1.098e for oxygen.

Table 1: Parameters used in the TiO2 testsa

Species A (eV) B (Å12) C (Å6) D (Å)
Ti Ti 31120.1 1 5.25 0.1540
O O 11782.7 1 30.22 0.2340
Ti O 16957.5 1 12.59 0.1940

a Taken from Ref. 27

A validation test is performed on a 10 unit supercell of the
ternary SrTiO3 system using the same functional form as Equa-
tion 1 and the parameters in Table 2. The Coulombic interaction
term is constructed using the formal charges of each species.
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Table 2: Parameters used in the SrTiO3 testsa

Species A (eV) B (Å12) C (Å6) D (Å)
Sr Sr 9949.1 1 0 0.2446
Sr Ti 12708.1 1 0 0.2191
Sr O 1805.2 1 0 0.3250
Ti Ti 16963.1 1 0 0.1847
Ti O 845.0 1 0 0.3770
O O 22746.3 1 20.37 0.1490

a Modified from Ref. 45 in which B was taken to zero. Setting
B = 1 separates atoms that are unphysically close to each

other, without affecting the final geometry [27].

In both tests, optimization of the system was performed by
reducing the norm of the gradient to 0.5 using a conjugate gra-
dients approach, then switching to a BFGS minimization algo-
rithm until GULP’s default convergence criterion was reached.
This approach ensured that most structures, including those far
from the nearest minimum, converged successfully. All tests
performed with GULP allow cell parameters to vary at a con-
stant pressure of 0 GPa. Thus, the enthalpy is equivalent to the
internal energy for the two test systems discussed herein. In ad-
dition computations on NaH at normal conditions, and near the
pressure of the structural transition have been carried out using
PWSCF.

3. Algorithm Details

3.1. Structural Representation
XtalOpt uses phenotypical representations, [9, 12, 13, 15–

17, 20–29] meaning the operators responsible for procreation
act directly on the actual coordinates and lattice parameters in
either fractional or Cartesian space, as opposed to mutating and
breeding the individual after encoding it as a binary string (or
genotypical representation, analogous to a chromosome – ex-
amples of this approach also exist in the literature[11, 18, 19]).
The use of phenotypical representations classifies XtalOpt as
an evolutionary algorithm as opposed to a genetic algorithm.

3.2. Evolutionary Operators
When implementing an evolutionary algorithm, it is impor-

tant to choose a set of operators that will explore the solution
space thoroughly. In a crystal structure search, this requires in-
vestigation of the atomic positions, atomic ordering, and lattice
parameters. There should also be a way for two individuals to
communicate, or share information in the creation of new off-
spring. The evolutionary operators in XtalOpt fall into two
categories: pure and hybrid operators. The pure operators each
perform one of the aforementioned tasks, while the hybrid op-
erators combine two pure operators into a single operation, with
the goal of improving the search in some way (i.e. reducing the
number of duplicate structures, or promoting exploration).

There are four pure operators in XtalOpt: crossover[9, 16,
20–23, 28] (providing communication), strain[21–23] (allow-
ing variation of the lattice parameters), a newly proposed “rip-
ple” operator (sampling new atomic positions), and exchange[9,
13, 21–23, 28] (exploring different atomic orderings).

The latter three pure operators are combined into two hy-
brid operators: “stripple”, which merges strain with ripple, and
“permustrain”, which combines strain with exchange (also known
as permutation [21]). These two hybrid operators, along with
pure crossover, compose the three operators that our evolution-
ary algorithm uses to generate new structures. In Section 4 we
describe the method employed to parametrize these operators
and illustrate the effectiveness of the hybrid approach.

Crossover (Pure)

(a) parent structures 

(b) rotated, reflected and translated parent structures 

(c) cut parents 

(d) new offspring

Figure 1: Example of the crossover operator, rendered in Cartesian coordinate
space. For ease of visualization, parents with similar lattices are employed and
the parents are not rotated during the transformation step (b).

The pure crossover (or “cut and splice”) operator[9, 12, 16,
20–23, 28] combines two parent structures to form a single
offspring. XtalOpt’s implementation resembles the real-space
mating operation of Deaven and Ho[12] that has more recently
been adapted to crystals by Glass et al.[22] in their “heredity”
operator. See Figure 1 for a stepwise example of how crossover
works.

In our implementation, crossover begins by selecting two
parents (Figure 1a). These parents are subjected to a series of
random reflections and rotations to avoid biasing a given orien-
tation, and all atoms are translated by the same random vector
to vary the structural representation within the unit cell bound-
aries (Figure 1b). A spatially coherent subset of each parent’s
atoms are selected by making a “cut” perpendicular (in frac-
tional coordinate space) to each transformed parent’s a vector
at the same random position (Figure 1c).

The offspring is formed by joining the atoms above the cut
from one parent with the atoms below the cut from the other

3



parent. These “blocks” are joined in fractional coordinate space
to avoid complications when aligning the cut ends of the Carte-
sian unit cell. The offspring’s lattice dimensions are determined
by taking a randomly weighted average of the parents’ cell vec-
tors. While it is in principle possible to make two children in
this manner, XtalOpt creates only one, as illustrated in Figure
1. The child created is chosen randomly.

After the cut is performed, the number of atoms in the off-
spring is adjusted to match the input composition. If there are
too many atoms of a given species, atoms of that type are ran-
domly removed. If there are too few, atoms from the discarded
portions of the parents are added. Figure 1d shows the resulting
offspring.

The key distinctions between XtalOpt’s crossover operator
and others found in the literature[12, 22] are (a) the fractional
coordinates of each parents’ atoms are shifted along all three
axes each time the operation is carried out, (b) the parents un-
dergo reflections prior to cutting, and (c) a minimum contribu-
tion parameter is introduced to ensure that a significant portion
of each parent is mixed into the offspring. This prevents the
trivial mixing of structures, e.g. 1% of parent A and 99% of
parent B.

The crossover operator is configurable by setting the per-
centage of new offspring which it creates (pc), and the mini-
mum contribution of each parent (pc,min).

Strain (Pure)
Pure strain is one of the most common single–parent opera-

tors employed for extended systems[21–23]. It multiplies each
unit cell row vector v by the symmetric Voigt strain matrix:

vnew = v

 1 + ε11
ε12
2

ε13
2

ε12
2 1 + ε22

ε23
2

ε13
2

ε23
2 1 + ε33

 (2)

where the εi j are random numbers taken from a zero–centered
normal distribution with a specified standard deviation. The
atomic coordinates are stored in fractional units during this op-
eration in order to transform them along with the lattice. An
illustration is provided in Figure 2.

(a) old unstrained lattice, simple cubic cell (b) new strained lattice, parallelepiped

Figure 2: An example of a unit cell (a) before, and (b) after the application of
strain. Atoms have been removed from the lattice to ease visualization.

Ripple (Pure)
Our periodic displacement (or “ripple”) operator shifts the

coordinates of each atom along a random axis (for demonstra-
tion, we will choose the z axis) by an amount ∆z, such that

znew = z+∆z. Acting in fractional coordinates, the displacement
each atom undergoes depends on the atom’s non-displaced (i.e.
x and y) coordinates via the formula:

∆z = ρ cos(2πµx + θx) cos(2πηy + θy) µ ∈ Z, η ∈ Z (3)

Here, ρ specifies the maximum possible displacement of any
atom in the displaced (z) direction, µ and η specify the number
of cosine waves in each of the non-displaced lattice directions,
and θx and θy are randomly chosen from the interval 0 ≤ θ < 2π
to vary the regions of the structure that are strongly displaced.
The name of this operator comes from the apparent “ripple”
sent through the periodic lattice, as seen in Figure 3.

Examples of solids whose structures contain a ripple mo-
tif are found in nature. For example, various elemental high–
pressure systems have modulated layer structures [46]: Cs–III
[47], Rb–III [48] and Ga–II [49] can be seen as different stack-
ing sequences of eight atom and ten atom layers. When viewed
along the a axis, the atoms in the various layers appear to be
placed approximately on the crests and troughs of a wave pass-
ing through the orthorhombic unit cell.

The nature of the directed coordinate mutation caused by
the ripple operator allows regions of the individual to undergo
little to no change, while distorting other regions considerably.
This provides balance between allowing known good informa-
tion to persist and exploration of the system’s configuration
space.

Exchange (Pure)
Exchange is another operator which has been extensively

used for crystals[9, 13, 21, 22, 24]. It explores atomic ordering
within the cell by exchanging the coordinates of two atoms of
different types a specified number of times.

Stripple (Hybrid: Strain + Ripple)
The hybrid “stripple” operator combines strain with our chemically–

motivated ripple operator. As shown in Section 4, both of these
constituent pure operators show excellent performance when
used alone, but they are prone to producing duplicate struc-
tures that waste computational resources by revisiting already–
known minima. Through their unified efforts, however, the
output of the hybrid stripple operator yields far fewer dupli-
cates, meaning that more computational resources sample new
regions of the potential energy landscape instead of re–examining
known structures.

The percentage of new offspring formed with the stripple
operator can be configured (ps), and the degree of stripplation
the parent undergoes is determined by the displacement ampli-
tude range (ρs,min and ρs,max), the periodicity of the cosine waves
(η and µ), and the standard deviation range of the lattice strain
(σs,min and σs,max).

Prior to applying this operator, the input parameters ρs,max
and σs,max are used as upper limits to assign a random value
to the ρs and σs values used in the operations. As a result of
this randomization, large maximum values will allow both ma-
jor exploration of the potential energy surface and sampling of
nearby configuration space during the course of the run. The
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(a) before applying the ripple operator (b) after applying the ripple operator

Figure 3: An example of a 10×10×10 atom simple cubic structure (a) before, and (b) after applying the ripple transformation defined in Equation 3, (ρ, µ, η, θx, θy) =

(0.08, 1, 1, 0, 0). To ease visualization, the ρ value is much lower than necessary for an effective transformation and the atoms are allowed to escape the unit cell
boundaries.

corresponding minimum parameters are not hard limits, how-
ever. XtalOpt will guarantee that either ρs ≥ ρs,min or σs ≥

σs,min, but not necessarily both. This allows either periodic dis-
placement or strain to have a negligible effect. But both cannot,
ensuring that the offspring will be significantly mutated com-
pared to the parent.

The order in which the strain and displacement are applied
is irrelevant, as each acts on independent aspects of the structure
(the lattice and fractional atomic coordinates, respectively).

Permustrain (Hybrid: Exchange + Strain)
Exchange (also known as permutation [21])is combined with

strain to form the “permustrain” operator, which explores lattice
configurations while varying atomic ordering.

The percentage of new structures formed using permustrain
is configurable (pp), as well as a maximum strain standard de-
viation (σp,max) and the number of independent atom exchanges
(Nex). When applying permustrain, the actual σp value will be
randomized over the range 0 ≤ σp ≤ σp,max. By allowing σp to
be near-zero, it is possible for pure exchange to occur.

Like strippling, the two constituent operations commute so
that the order of applying strain and permutation does not af-
fect the offspring structure. By itself, exchange leads to few
duplicate structures. Nonetheless, combining these two opera-
tors also results in a decrease of the number of duplicates ob-
tained from applying strain or exchange alone. More impor-
tantly, combining these pure operators hastens exploration of
the potential energy surface. Section 4 provides results to sup-
port both claims.

3.3. Selection

Apart from evolutionary operators, another defining feature
of an EA is the fitness function, which provides a measure of
an individual’s worth and allows a determination of which indi-
viduals are best suited to become parents. Most GAs/EAs em-
ployed for chemical structure prediction use a thermodynamic
quantity such as the individual’s energy, enthalpy, or free energy
to determine its fitness[9, 11–13, 15, 16, 20, 22, 23, 27–29].
XtalOpt is no exception, and uses the enthalpy (H = U + PV)
as the quantity by which to assess the stability of an individual.
This allows XtalOpt to be used on solids under high pressure,
but we point out that our implementation is by no means limited
to such searches. The pressure may be specified by supplying
the appropriate information in the input template for the exter-
nal optimizer. This will not affect the behavior of XtalOpt.

The probability pi of selecting a given individual for breed-
ing is calculated from its enthalpy Hi as:

pi = N
(
1 −

Hi − Hmin

Hmax − Hmin

)
, (4)

where Hmin and Hmax are the enthalpies of the best and worst in-
dividuals in the pool and N is a normalization constant ensuring
that

∑
pi = 1.

3.4. Continuous structure generation

In both traditional Lamarckian evolutionary algorithms and
XtalOpt, the initial population of structures is either randomly
generated or seeded by the user. These then undergo time–
consuming structural optimization. Traditional algorithms wait
for all of the local optimizations to finish before evaluating the
fitness of the optimized structures and constructing the next
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generation of unoptimized structures via procreation. The new
set of structures are sent for optimization, and the process is
repeated until an endpoint is reached. If a single individual is
slow to optimize, this generation–at–once breeding frenzy cre-
ates a bottleneck in the algorithm, preventing new structures
from being generated for hours or even days.

To alleviate this problem, Bandow and Hartke introduced a
continuous mode of operation in their studies of water clusters
[15]. This approach differs from a traditional evolutionary al-
gorithm by procreating a new offspring for minimization imme-
diately every time an individual optimizes, rather than waiting
for an entire generation to complete. This procedure takes full
advantage of parallel processing, since a predefined number of
structural optimizations are running constantly, eliminating the
bottleneck described above. The parents of new offspring are
chosen from a pool of the fittest individuals in the entire popula-
tion (a population–based pool [15, 29]) as opposed to selecting
from only the previous generation (a generation–based pool).
Bandow and Hartke[15] have clearly documented the more ef-
ficient usage of computational resources in a continuous mode
compared to traditional generation–based algorithms.

XtalOpt implements this workflow for its structural opti-
mizations. The concept of “generation” is refined in XtalOpt’s
continuous mode to denote the number of individuals that sep-
arate an individual from the inital seeded or random structures;
generations hold only a trivial position in this mode of opera-
tion.

Care must be exercised when using a population-based se-
lection pool to ensure that duplicate individuals are found and
removed from the population. Since the individuals are cho-
sen by enthalpy-weighted probabilities, any duplicate structure
in the pool will unfairly increase that individual’s chances of
breeding. To reduce this problem, XtalOpt uses a “niching”
strategy, outlined below.

3.5. Niching
The removal of duplicate individuals, or niching, is essential

to prevent stagnation of the breeding pool, or becoming “stuck”
on a single structure. Previous implementations of niching have
relied on comparing the energy or enthalpy of a structure[12,
24], which works fine for most systems but can produce false
positives if two different structures have similar enthalpies. For
clusters, Li et. al. have employed a geometric criterion in which
bond distances are compared [50]. Abraham and Probert[26]
proposed an advanced niching technique to examine extended
systems, however we have opted for a simpler method that com-
pares three inherent properties of the structure (the individual’s
fingerprint) in order to eliminate redundancies. Others have
defined fingerprint functions to determine the similarity between
various structures [51]. However, these have been employed
primarily as post–analysis techniques in order to quantify en-
ergy landscapes, and not as niching schemes.

The components of a fingerprint in XtalOpt are the en-
thalpy, spacegroup, and volume of the structure. The enthalpy
and volume are checked to be within a specified tolerance, and
the spacegroups of the structures are found using Dr. Atsushi
Togo’s SPGLIB library [34] and compared. If the fingerprints

of the two individuals match, the least favorable individual (there
is usually a small enthalpy difference) is killed and removed
from the population, leaving the other to continue. In case that
the enthalpies match exactly, an arbitrary structure is killed.

This method of determining duplicates may lead to false
positives, or negatives in rare situations. For example, it is pos-
sible for two different structures to have the same fingerprint
according to the niching scheme described above, especially if
the spacegroup has little or no symmetry (ie. P1 or P1̄). More-
over, a certain spacegroup may not be recognized because the
atomic coordinates differ slightly from their ideal positions.

3.6. Restraints

In order for an EA to be efficient, it must be restricted to a
physically reasonable search space. Such “directed” evolution
is necessary to take into consideration various environmental
factors. For example, under sufficient pressure the PV term be-
comes the dominant contribution to the enthalpy (H = U + PV),
and cells with too large of a volume will be highly destabilized.
Thus, it is possible to accelerate the search by focusing on cells
with a specified volume.

In XtalOpt various restraints may be employed to direct the
search, depending upon how much is known about the target
structure. For example, the lattice parameters and volume may
be constrained to a range or be fixed. Other restrictions allow
one to limit the minimum interatomic distances to prevent over-
lap of atoms. Of course, if nothing other than the composition
is known about the system a loose set of limits may be used,
although it is beneficial to provide reasonable limits guided by
chemical intuition, to ensure a well-behaved search. For ex-
ample, minimum interatomic distances may be estimated using
the Shannon radii [52]. All restrictions are enforced before lo-
cal optimizations are performed, and by default the structures
are permitted to optimize outside of the specified values.

In addition, the structure’s lattice is adjusted prior to opti-
mization so that all angles are between 60◦ and 120◦ by a pro-
cess similar to that described by Oganov and Glass[25]. The
following transformations are applied to all combinations of the
three lattice vectors:

If both∣∣∣∣∣∣arccos
(

vi · vj

||vi|| ||vj||

)
− π

∣∣∣∣∣∣ >
π

3
, and (5a)

||vi|| ≥ ||vj|| (5b)

are true, the cell should be transformed. To do this, the vector
vi is replaced by the vector v′i , defined as

v′i = vi − ceil
(∣∣∣∣∣∣vi · vj

||vj||2

∣∣∣∣∣∣
)

sign(vi · vj)vj (6)

Atomic coordinates are stored in Cartesian form before the
lattice transformation to maintain the structure’s atomic config-
uration. After the angles are set, the atoms are adjusted so that
they lie within the new cell by adding or subtracting 1 from the
new fractional coordinates.
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Figure 4: Distribution of the enthalpies of randomly generated structures con-
taining 16 titanium and 32 oxygen atoms after local optimization has been per-
formed. Out of 9943 structures, only 7 corresponded to the global minimum of
TiO2, rutile.

Eqs. 5a, 5b, and 6 differ somewhat from those provided by
Oganov and Glass[25], since the above equations apply to vec-
tors of arbitrary length. A graphical example of this transforma-
tion with a detailed explanation is available online at http://xtalopt.openmolecules.net.

4. Results

4.1. Quantifying the Performance of an Evolutionary Algorithm

Various polymorphs of TiO2 are known (anatase, brookite,
hollandite, and ramsdellite), however rutile is the global mini-
mum at normal pressures. In order to provide reasonable set-
tings for various parameters in our EA rutile was used as a test
case in the benchmarking procedure, detailed below. But first
we wanted to find out how well a random structure search fares
when presented with this problem.

9943 cells containing 16 TiO2 units were randomly gener-
ated and then optimized using GULP and the potentials pro-
vided in Section 2.3. Figure 4 shows the distribution of en-
thalpies obtained from the randomly constructed atomic config-
urations. Of these structures, only seven (0.074%) produced the
rutile supercell, implying that ∼1450 random structures must be
generated in order to have some assurance that the global mini-
mum would be found. Can an evolutionary algorithm do better
than this? Shortly we will show that for this system an EA (em-
ploying the proper parameters) is consistently able to find rutile
in fewer than 600 structures, demonstrating that yes indeed it
can.

One particularly difficult aspect of characterizing an evo-
lutionary algorithm is overcoming the stochastic nature of the
method. There is always a probability that the target structure
may appear in the random first generation, or not at all in a
given search (See Figure 5). A common technique is to report
the average number of generations or structures that it takes a
search to produce the target structure[9, 12, 19, 23, 24, 29], but

this method is problematic – without using an enormous num-
ber of structures in each trial, it is likely that at least some of
the tests will not find the global minimum.

Therein lies the dilemma: how to account for the failed
searches in the average? These numbers are highly system
specific, and one can expect the estimates to change drasti-
cally with cell size and the number of different atom types. To
avoid this problem, we propose a method that quantifies the
evolutionary algorithm’s performance using a modest number
of structures per trial. Our method doesn’t require each trial
to find the global minimum, facilitating fast, automated bench-
marking. For example, in the following sections the results of
45 tests, each consisting of 100 searches apiece — a total of
4,500 independent searches using the EA — are provided. A
benchmarking technique that does not require manual interven-
tion or a guarantee of success is required for such an undertak-
ing.

The analysis proposed herein is an extension of the tech-
nique introduced by Hartke, which takes data from several searches
(N = O(100)) with identical parameters and considers the in-
dividual with the lowest energy in each generation [11]. The
original “Hartke plot” shows three energy trends on the same
plot: the worst search’s best individual by generation, the av-
erage best individual by generation, and the best search’s best
individual by generation. Of particular interest to us is the “av-
erage best” plot, which shows a curve resembling a standard
exponential decay. In Figure 5 an example of a “Hartke plot”
obtained during our parametrization of XtalOpt is provided.
Since XtalOpt employs a continuous mode, the x-axis corre-
sponds to the number of structures generated, rather than the
number of generations considered.

Figure 5: An example of a “Hartke plot” with the best, average, and worst
enthalpy runs plotted using solid lines. The dotted line shows the fit described
by Equation (7) and a “×” denotes the half–life point. It can be seen that some
searches never produced the target structure rutile (blue line, top), while others
found rutile in the first few structures (green line, bottom), illustrating why a
large number of searches are needed to benchmark a given parameter set.

We have taken Hartke’s idea a step further and fit a function
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of the form

H̄(i) = (H̄rand − Hmin)eaib + Hmin (7)

to the average enthalpy curve. In this equation, a and b are
parameters to be determined, i is the structure index, and Hmin
is the enthalpy of the most stable (target) individual. H̄rand is
the average enthalpy of a large number (N = O(10, 000)) of lo-
cally optimized random structures. This choice of constants
removes variations from the endpoints by forcing H̄(0) = H̄rand
and lim

i→∞
(H̄(i)) = Hmin. All structures from the first (random)

generation are removed before fitting so that the structure at
i = 1 is the first individual generated via an evolutionary opera-
tor.

To quantify the fitness of a given parameter set, many (∼100)
searches are performed using a test system, and the Hartke plot
is generated along with the H̄(i) fit. The efficiency is related
to the half–life of the exponential curve, i 1

2
, which represents

how many individuals it takes for H̄(i) to drop to an enthalpy
halfway between a locally optimized random structure and the
global minimum. Thus, lower i 1

2
values indicate that an aver-

age search approaches the minimum more quickly. However,
this half–life value is not the only metric considered. The per-
centage of searches that find the global minimum by a prede-
fined structure number (% success) and the number of duplicate
structures produced during the run (% duplicates) as determined
using the previously described niching strategy are used to ob-
tain a clear idea of the performance of a particular parameter
set.

Individually, each of these measures provides insight into
a search’s performance. A steep decline along the H̄(i) curve,
or a low half–life, suggests that the search is quickly locating
the valleys and exploring them. A high success rate obviously
indicates that a search is performing well, but a low success
rate can offer clues as to what is happening. For example, if
a parameter set yields a good (low) half-life but a bad (low)
success rate, this suggests that the algorithm has difficulty es-
caping metastable local minima — it quickly finds reasonable
structures, but fails to further improve upon them. The percent-
age of duplicates shows how effectively the computational re-
sources are being used: a high number of duplicates means that
cycles are being wasted on re-exploring known minima. The
number of duplicate structures can also be used as an indication
of the diversity maintained during a search.

It should be pointed out that each of these metrics has an
error margin associated with it. From examining our tests on
TiO2, we estimate the uncertainty to be ±5 structures for the
half-lives, ±3% for the success rates, and ±1% for duplicate
rates. This is the reason why, for example, the entries in the
fourth row in Table 6 (Nex = 4) differ slightly from those of the
first row in Table 8 (σp,max = 0), even though these searches
had essentially identical parameters.

4.2. Parametrization with TiO2

XtalOpt has been parametrized in three steps. First, tests on
TiO2 were carried out to determine the best parameters for the
pure operators alone. These operators were then mixed, and the

hybrid operators were tested to find the settings that maximized
their performance. Finally, the percentage of new structures
that each operator should generate during a production run was
determined. Additionally, a validation test using a more chal-
lenging ternary oxide system, SrTiO3, was performed.

Each test consisted of 100 unique searches, with 600 struc-
tures generated during the course of each search. We consid-
ered a system with 32 oxygen and 16 titanium atoms, targeting
rutile as the global minimum. The randomly generated initial
population had 20 structures. The restraints used were loose –
cell lengths were limited from 0 to 40 Å, and cell angles were
limited to 60◦-120◦. The volumes of all structures were initially
scaled to 485 Å3. These same restraints were used in the ran-
dom search (Figure 4) as well. In the fit according to Equation
7, Hmin was the enthalpy of sixteen rutile unit cells (-636.806
eV), and H̄rand was the average enthalpy of the randomly gen-
erated set of structures from Figure 4 (-622.528 eV). The least–
squares method in Python’s SciPy[53] library was employed
to determine a, b during the fitting procedure, and a custom
Newton–Raphson routine was used to calculate i 1

2
. The volume

(tolerance of 0.002 Å3), enthalpy (tolerance of 0.002 eV), and
spacegroup were used for niching.

Individual Operators
Starting with the pure crossover operator, we varied the

minimum amount a parent could contribute to the child struc-
ture, pc,min, and monitored the aforementioned metrics. As Ta-
ble 3 shows, crossover led to the creation of very few duplicate
structures, indicating that this operator samples the potential en-
ergy surface well. However, the half-life was the highest of any
operator which was considered, and the likelihood of finding
rutile in an average run consisting of 600 structures could be
improved.

Table 3: The influence of the minimum contribution parameter, pc,min, on the
efficiency of the crossover operator. The half-life (i 1

2
), the percentages of

searches that found rutile (% success), and the % duplicates that were found
are compared.

pc,min (%) i 1
2

% success % duplicate
0 26.9 97.0 0.7

10 40.5 91.0 0.2
20 30.6 80.0 0.2
30 35.2 85.0 0.1
40 37.5 86.0 0.1
50 36.1 86.0 0.1

Interestingly, setting pc,min = 0 resulted in the lowest half-
life and the highest success rate in this set of runs. This set-
ting allows for the probability that the child structure consists
∼100% of parent A, and ∼0% of parent B. Since the lattice vec-
tors of the child are a randomly weighted average of those of the
two parents, it is highly unlikely that the child would be equiv-
alent to parent A. More likely, the cell shape of parent A would
be modified. Thus, this setting allows crossover to behave in a
similar fashion as the strain operator.

Comparison with Table 4 shows the performance of the pure
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strain operator is far superior to that of crossover. Thus, the
lower i 1

2
and higher success rate for pc,min = 0 can be attributed

to the strain–like behavior that results from trivial mixing. Since
the goal of crossover is to provide communication between two
structures (a hallmark of a GA/EA that does not occur in these
“pseudo–strain” crossovers), we do not consider the pc,min = 0
data when proposing a value for pc,min. It appears that a pc,min of
between 20-30 would provide a balance between a lower half–
life, and a higher success rate, while at the same time not being
too large.

In Table 4 the same metrics for varying the minimum stan-
dard deviation, σmin, of the pure strain operator are provided.
Strain has a much lower half–life than crossover, and superior
success rate: each test was certain to find rutile within the first
600 structures generated. The drawback of strain is that it suf-
fers from a high percentage of duplicate structures. The num-
ber of duplicates decreases as σmin increases, suggesting that if
a small strain is applied, the structure will revert to the origi-
nal after local optimization. It appears that a minimum strain
value of 0.5 or greater lessens the likelihood of these ineffective
mutations.

Table 4: Same as Table 3, except for the strain operator, and varying the mini-
mum standard deviation of the lattice strain, σmin.

σ range i 1
2

% success % duplicate
0.0-1.0 15.8 100.0 26.4
0.1-1.0 18.0 100.0 21.8
0.2-1.0 15.9 100.0 14.6
0.3-1.0 17.6 100.0 10.0
0.4-1.0 15.7 100.0 8.3
0.5-1.0 14.2 100.0 6.2

Before combining strain with the ripple operator to form
stripple, we needed to find out what minimum ripple amplitude
(ρmin) would be necessary to reduce the number of duplicates
to a reasonable level. As Table 5 shows, the success rate and
half–life of ripple was comparable to that of strain. Once again,
the number of duplicates was quite high and decreased with
increasing ρmin, confirming that structures which were not suf-
ficiently modified by the mutation had optimized back to the
original parent. In order to keep diversity high in the structure
search, a minimum amplitude of at least 0.5 is suggested.

Table 5: Same as Table 3, except for the ripple operator, and varying the mini-
mum amplitude, ρmin, of the ripple sent through the cell.

ρ range i 1
2

% success % duplicate
0.0-1.0 17.6 99.0 22.4
0.1-1.0 16.5 97.0 17.6
0.2-1.0 19.2 98.0 12.2
0.3-1.0 15.5 99.0 9.0
0.4-1.0 15.9 99.0 7.1
0.5-1.0 16.4 100.0 7.3

Although the half–life of exchange was only slightly higher
than that of the strain or ripple operators, the success rate was
markedly lower (Table 6). Swapping a small number of atoms

led to a high percentage of duplicates. If exchange is used by it-
self, at least three atoms must be interchanged in order to main-
tain diversity in the offspring. However, swapping too many
atoms leads to a loss of good structural information. The ideal
setting for this variable will undoubtedly depend on the number
of atoms and atom types in the unit cell. For cells containing
around 50 atoms, Nex = 3, 4 seems to be a good balance which
will allow for a diverse population, while retaining information.

Table 6: Same as Table 3, except for exchange, and varying the number of atom
swaps, Nex.

Nex i 1
2

% success % duplicate
1 12.0 86.0 36.4
2 17.1 94.0 13.3
3 19.2 85.0 7.2
4 21.1 92.0 3.5
5 22.9 69.0 1.9
6 21.0 89.0 1.2

The aforementioned tests indicate that strain and ripple do
quite well on their own. Can the hybrid stripple outperform
them in some way? As Table 7 shows, merging the two oper-
ators into one significantly reduced the number of duplicates.
Moreover, the searches nearly guaranteed success, and the best
half–lives were comparable to those of the pure operators. Thus,
these tests indicate that strippling is superior to pure strain and
ripple, since it does a better job of sampling the configuration
space, while still being able to zoom in on the most stable struc-
ture.

The σs,min and ρs,min have been set to the values determined
for strain and ripple alone. These minimum values are not hard
limits, and only one of them is enforced, allowing either strain
or ripple to be applied with negligible effect. Setting σs,max =

0.5 and ρs,max = 1 resulted in the most efficient exploration of
the potential energy surface, with a balance between low half-
life and few duplicates.

Table 7: Same as Table 3, except for the hybrid stripple operator. Different
combinations of ρs,max and σs,max values were tested. The minimum values
used were ρs,min = σs,min = 0.5.

ρs,max, σs,max i 1
2

% success % duplicate
0.5,0.5 17.0 100.0 4.9
0.5,1.0 20.1 99.0 2.6

0.75,0.75 24.3 99.0 0.8
1.0,0.5 17.9 100.0 2.7
1.0,1.0 32.0 100.0 0.4

To allow pure exchange to occur with a finite probability,
the hybrid permustrain operator does not enforce a minimum
strain standard deviation, allowing σp to be small. The number
of exchanges, Nex, was set to four (ensuring that for a pure swap
the number of duplicates would remain low), and the maximum
deviation of the strain, σp,max was varied. As Table 8 shows,
the success rates and half-lives of the hybrid are comparable
to those of exchange alone. However, the number of dupli-
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cate structures could be decreased by varying σp,max. Setting
σp,max = 0.4 − 0.6 ensures a low duplicate count, without sig-
nificantly affecting the success rate or half-life as compared to
pure exchange.

Table 8: Same as Table 3, except for the hybrid permustrain operator. Different
values of σp,max were tested with Nex=4 swaps.

σp,max i 1
2

% success % duplicate
0.0 19.6 89.0 3.9
0.2 20.5 89.0 3.5
0.4 23.2 85.0 1.7
0.6 23.9 90.0 0.8
0.8 25.3 88.0 0.5
1.0 28.4 92.0 0.6

Combining the Operators

Now that a reasonable set of values for all of the param-
eters in the individual operators has been found, an investiga-
tion of which ratios of crossover (pc), stripple (ps), and per-
mustrain (pp) give rise to the most fruitful search was carried
out. All parameters were set to the values determined above
(also listed in Table 10). The percentage of each operator has
been varied, and the results are given in Table 9. The first seven
rows show that all of our runs resulted in a small number of
duplicates, and most found rutile within 600 structures. Setting
(pc, ps, pp)=(15, 50, 35)% gave the lowest half–life. However,
due to the estimated error of ±5 structures associated with i 1

2
,

one can only conclude that all of the ratios considered appear to
give a reasonably good search. It is comforting to see that the
evolutionary runs outperformed the random search (see Figure
4) which needs an estimated 1450 structures on average to find
the rutile supercell.

Table 9: Same as Table 3, except for varying the ratios of the number of struc-
tures created using the crossover (pc), stripple (ps), and permustrain (pp) op-
erators. For each of these, the parameters given in Table 10 were employed.
For comparison, another parameter set published in the literature has also been
testeda.

pc, ps, pp i 1
2

% success % duplicate
15,40,45 21.4 97.0 1.5
15,50,35 17.0 100.0 1.7
25,30,45 20.3 100.0 1.2
25,40,35 21.7 98.0 1.6
25,50,25 20.6 100.0 1.5
35,30,35 23.1 99.0 1.2
35,40,25 21.7 100.0 1.4
85,15,5a 25.2 99.0 1.1

a The parameters were chosen to resemble those used in Ref.
22 as closely as possible.

Unfortunately, it is not common practice in the literature to
state all of the parameters used in an evolutionary search, mak-
ing direct comparison to other algorithms difficult. However,
Glass et al. give a particularly good description of their opera-
tors and parameters in Ref. 22. The authors have suggested to

use 85% crossover, 15% strain and 5% exchange. In the first
seven rows of Table 9, the percent of crossover was kept rel-
atively low, since our previous computations showed that this
operator alone gave a significantly higher half-life than permus-
train or strippling. We wondered how well a setting with a high
pc would fare, and decided to test out the parameters suggested
in Ref. 22.

It is important to note that our method differs from the algo-
rithm described in Ref. 22 — for example, we use a continuous
mode of operation with a population based pool and apply a
niching scheme. Our operators differ as well, but by supply-
ing proper parameters the operators described by Glass et al.
can be emulated. In performing this comparison, the minimum
crossover contribution was set to zero. The stripple operator
was fixed to apply no ripple and always use a strain standard de-
viation of 0.7. Permustrain used three exchanges with no strain.
The operator ratios were set to (pc, ps, pp)=(85,15,5)%, and all
other values to those in Table 10.

As the last row of Table 9 shows, even taking the error inher-
ent in i 1

2
into account, the half–life obtained from the parameter

set suggested in Ref. 22 is larger than our best set of values.
Most likely this is due to the higher pc employed, however it
is not quite clear since the computations varied in a number of
respects, as described above. The success rates, and number of
duplicate structures from all of the runs are comparable.

4.3. A More Difficult Test: SrTiO3

Based upon the tests carried out on the TiO2 supercell, we
recommend the values in Table 10 for a generic XtalOpt search.
While evolutionary algorithms are system specific and these pa-
rameters will not be ideal for all cell compositions, they serve
as a starting point that should allow most searches on binary
systems with moderately sized unit cells (less than 50 atoms)
to find the global minimum within the first few hundred struc-
tures. We have not specifically tested the effect of varying the
size of the first generation (Ni), nor the size of the breeding
pool (Npool). Both should be large enough so as to allow for
diversity in the breeding pool, but not too large so as to waste
computational time. The energy/enthalpy and volume niching
tolerances will also be system specific, and depend upon the
precision settings requested in the computation.

Finally, we wanted to see how this set of parameters would
perform on an even more challenging system. A 10 unit super-
cell of the ternary SrTiO3 (50 atoms total), which crystalizes in
the perovskite structure was chosen.

In order to determine H̄rand for the fit in Equation 7, a ran-
dom search consisting of 100,391 structures was carried out.
The perovskite structure was not found even once, indicating
that this is a much more demanding system. The enthalpy of the
best randomly generated structure was actually 0.11 eV/atom
higher than that of the global minimum.

In these tests, the parameter set provided in Table 10 was
employed, along with the GULP optimizer, and the potentials
given in Section 2.3. The results were compared with those
obtained when our algorithm was modified so that it replicated
the method described in Ref. 22 as closely as possible. Both
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Table 10: Suggested default parameters for a generic XtalOpt search.
Parameter Description Value

Ni Size of first generation 20+

Npool Size of breeding pool 15+

pc Percentage of new structures generated via crossover 15
pc,min Minimum contribution of each parent 25

ps Percentage of new structures generated via stripple 50
σs,min Minimum standard deviation of ε (Eq. 2) 0.5
σs,max Maximum standard deviation of ε (Eq. 2) 0.5
ρs,min Minimum amplitude of periodic displacement (Eq. 3) 0.5
ρs,max Maximum amplitude of periodic displacement (Eq. 3) 1.0
η, µ Number of “waves” per cell (Eq. 3) 1,1
pp Percentage of new structures generated via permustrain 35

σp,max Maximum standard deviation of ε (Eq. (2) 0.5
Nex Number of atom swaps 3-4
∆H Tolerance for enthalpy niching ∼ 0.04 meV/atom
∆V Tolerance for volume niching ∼ 1 × 10−4 Å3/atom

tests were performed using 100 independent searches that ter-
minated after 1000 structures had been generated. The values
used in fitting Equation 7 were H̄rand = −1484.522 eV and
Hmin = −1500.312 eV.

Table 11: The half–life, percentage of successful searches, and percentage of
duplicates obtained when using the parameter set from Table 10, and a ratio
of (pc, ps, pp)=(15, 50, 35)%. We have also considered another parameter set
published in the literaturea. The target was the perovskite structure in a 10×
unit cell of SrTiO3.

pc, ps, pp i 1
2

% success % duplicate
15,50,35 566.3 12.0 2.2
85,15,5a 1460.9 7.0 1.0

a The parameters were chosen to resemble those used in Ref.
22 as closely as possible.

As Table 11 illustrates, the ternary perovskite was indeed a
more difficult system than rutile, despite the fact that the two
had roughly the same number of atoms in the unit cell. While
the success rates for the TiO2 supercell were nearly perfect
in 600-structure searches, only 7-12% of the 1000-structure
searches find perovskite SrTiO3. Nonetheless, it was encour-
aging to see that our success rate was nearly double, and our
half–life was about 2.5 times lower than one obtained using
parameters similar to those proposed in Ref. 22. This test in-
dicates that the parameter set proposed in Table 10 will likely
provide reasonable results for different systems.

However, this data illustrates that there is still room for im-
proving crystallographic evolutionary algorithms. For exam-
ple, we are currently considering new ways by which commu-
nication between two structures can occur, so as to improve the
half–lives and success rates obtained by a two–parent operation.

4.4. Tests with Plane–Wave DFT Codes

Due to the computational expense involved, we were not
able to carry out tests similar to those outlined above for TiO2
and SrTiO3 using a plane–wave DFT code. Systems for which

thousands of optimizations could be performed in a reasonable
amount of time using a first–principles program contain only
a few atoms in the unit cell. In these cases, the global mini-
mum is found quickly, perhaps even in the first set of randomly
generated structures. The performance of XtalOpt with both
PWSCF and VASP has been tested. Unfortunately, because of
the reasons listed above we are only able to report the results of
a single search, and not of a series of benchmarks.

At normal pressure all of the alkali hydrides crystallize in
the rocksalt structure with one atom of each type in the primi-
tive unit cell. Experiments have shown that when compressed
these ionic hydrides (except for LiH) transform to the CsCl
structure [54]. For NaH, this transition has been found to occur
at 29.3 GPa [55]. Our PWSCF computations predict the transi-
tion to occur just under 35 GPa. We have employed XtalOpt to
find the most stable structure of a quadruple unit cell (8 atoms
in total) of NaH at normal pressure. In the PWSCF run the
rocksalt structure was found quickly, and almost all of the sys-
tems generated were the global minimum. A more interesting
run where the pressure was set to 29.3 GPa in the PWSCF input
file was also performed. According to our calculations, at this
pressure the rocksalt structure is only 17 meV/atom more stable
than the CsCl configuration. Out of all of the structures which
were generated by XtalOpt, about 16 % were the global mini-
mum, whereas approximately 75 % had the slightly less stable
CsCl structure, and the rest were even less stable. Similar re-
sults have been obtained with VASP. We are currently using
XtalOpt to predict the structures of solids under pressure since
these may have exotic structures and/or stoichiometries [2–5].

5. Conclusion

Herein, we outline an implementation of an evolutionary
algorithm, XtalOpt, which may be used for predicting crys-
tal structures. Our method has been interfaced with various
plane–wave density functional codes (VASP, PWSCF), as well
as GULP, which employs empirical potentials. Importantly,
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XtalOpt is published under the GNU Public License, and it
is freely available at http://xtalopt.openmolecules.net or from
the CPC library. XtalOpt has been written as an extension
to the Avogadro molecular editor. It has an intuitive, easy to
use graphical interface, with numerous useful data analysis fea-
tures. A brief tutorial of XtalOpt, which explores its interface
and selected features is given in Appendix A.

A chemically motivated ripple operator, which sends a wave
through the crystal, has been introduced. Moreover, it is shown
that combining two pure operators into a hybrid (ie. stripple
which consists of strain and ripple, or permustrain which is
made up of permutation and strain), results in superior perfor-
mance by decreasing the number of duplicate structures. This is
essential for our algorithm, since it uses a continuous workflow
and a population based pool. In order to keep the diversity in
the pool high, a niching scheme which compares the volumes,
enthalpies and spacegroups of the structures is employed.

Suggested values for various parameters in XtalOpt have
been set by performing benchmarks on a 16×TiO2 supercell
of rutile. We have introduced a way to quantify the perfor-
mance of an evolutionary algorithm by fitting an exponential
decay function to the average best structure data obtained in a
Hartke plot and calculating the half–life. This gives a metric of
how quickly an average search will approach the global mini-
mum. Other metrics, such as the success rate, and number of
duplicate structures were also employed to determine the effi-
ciency of our algorithm. Tests on a more difficult SrTiO3 super-
cell indicate that XtalOpt performs much better than a random
structure search. Nonetheless, various operators and parameters
could potentially be improved.

We expect that chemists, physicists, and materials scien-
tists interested in predicting the structures of solids will find
XtalOpt to be a useful tool towards this end.
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Appendix A. Brief XtalOpt Tutorial

It is suggested that new (as well as potential) users read
through the following tutorial. The tutorial uses GULP as the
local optimizer to search for stable and metastable TiO2 struc-
tures. The latest source code, installation instructions, and addi-
tional tutorials can be found on XtalOpt’s website, http://xtalopt.openmolecules.net.

Appendix A.1. Launch XtalOpt
Open Avogadro, go to the “Extensions” menu and select

“Crystal Optimization...”.

Appendix A.2. Enter composition and restraints

The interface opens to the “Cell Initialization” tab, shown
in Figure ??. We will use a 6 formula unit supercell of TiO2
for this tutorial, so enter “Ti6 O12” for the cell composition.
Let us assume that we know nothing about the system and use
very loose restraints. Set all cell length minima to 1 Å and
maxima to 20 Å. Constrain the angles to be between 60◦ and
120◦, and the volume from between 1 and 500 Å3. Specify
a minimum interatomic distance of 0.5 Å. (Note that due to
the angle adjustment described in Section 3.6, 60◦-120◦ is the
largest range of cell angles that XtalOpt will generate.)

Appendix A.3. Optimizer setup

On the next tab choose GULP for the local optimizer and
enter a template for GULP to use. Select “GULP” as the “Opti-
mization Type” and “GULP .gin” as “Template”. Next, fill out
the text field on the right with the following template:

opti conj conp

switch_minimiser bfgs gnorm 0.5

cell

%a% %b% %c% %alphaDeg% %betaDeg% %gammaDeg%

frac

%coordsFrac%

species

Ti 2.196

O -1.098

buck

Ti Ti 31120.1 0.1540 5.25 15

O O 11782.7 0.2340 30.22 15

Ti O 16957.5 0.1940 12.59 15

lennard 12 6

Ti Ti 1 0 15

O O 1 0 15

Ti O 1 0 15

Alternatively, one can load the scheme file distributed with the
source code under samples/gulp-TiO-xtalopt.scheme.

This template implements the potential described in Table 1.
It is also included in the download of XtalOpt. Note the “%”
surrounding various keywords. These will be replaced by the
structure-specific data when the optimizer is invoked for each
structure. Click “Help” to view all of the keywords available.
The number of optimization steps can be modified with the
“Add/Remove” buttons. The “user” fields in the lower left cor-
ner allow users to specify their own keyword/value pairs, which
is useful for making changes to multiple optimization steps at
once. Only one optimization step in this will be used in this
tutorial.
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Figure A.6: The “Cell Initialization” tab

Appendix A.4. Optimization settings

In the “Optimization Settings” tab, most of the default set-
tings should suffice (See Table 10). We will be running our test
on a dual-core processor, so limit the number of running jobs to
1, and set the number of continuous structures to 2. This is to
leave one core open for XtalOpt and the rest of the operating
system to run. This is necessary for GULP, which runs locally,
but not for VASP or PWSCF, which XtalOpt runs on remote
clusters. Initial seeds will not be specified, but the option to do
so exists on this screen.

Appendix A.5. System settings

XtalOpt currently will only run GULP on a local instal-
lation (although VASP and PWSCF can run on a remote clus-
ter). Thus, for GULP to run we only need to specify the lo-
cal path and the path to the ”gulp” executable. In the ”Sys-
tem Settings” tab, we use ”/tmp/xtalopt/tutorial” for the path.
The path to GULP will depend on your specific installation.
This configuration will create a directory for each structure at
/tmp/xtalopt/tutorial/<gen#>x<id#>/ that will contain
input, output, and data files specific to each structure. It also
uses this information to write two files: /tmp/xtalopt/tutorial/xtalopt.state,
which contains save/resume information to continue a session

that has been stopped, and /tmp/xtalopt/tutorial/results.txt,
which stores a list of all structures sorted by increasing en-
thalpy. The latter file is handy for offline analysis, since there is
no need to open XtalOpt to find the most stable structures of a
previous search.

Appendix A.6. “Begin”

XtalOpt has everything it needs to start its search at this
point; click the “Begin” button in the lower right corner of the
application to tell it to start the search algorithm. A progress
bar appears as the random first generation is created. Switch to
the “Progress” tab and 20 entries will appear, all with a status
of “Waiting for Optimization”. Click “Refresh” on this tab to
begin the local optimizations. From here, XtalOpt will con-
tinue to run without user input, starting new optimizations and
generating new structures until it is stopped by the user.

Appendix A.7. Monitor progress

As XtalOpt performs the search, the progress table contin-
uously updates, providing information about each structure. In
Figure ?? we see individuals in various stages of completion:
most are optimized (in yellow), structure 2x7 has been auto-
matically marked as a duplicate (dark green) of structure 3x3
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Figure A.7: The “Optimization Templates” tab

and removed from the breeding pool, structure 4x4 is currently
undergoing a local optimization (light green), while structure
4x5 is waiting to be optimized (blue).

Other useful information is displayed about each structure,
such as the time spent in optimization, the optimized enthalpy,
the cell volume, spacegroup, and each structure’s ancestory (i.e.
parent(s) and parameters for the evolutionary operator that gen-
erated it). A status bar on the bottom of the window shows the
number of structures that are optimized, running, and failing at
any given time. This information is visible regardless of which
tab is currently being viewed.

An additional feature of the progress table is the ability to
immediately visualize any of the individuals in the Avogadro
main window – simply clicking on a row in this table will dis-
play the three-dimensional structure in Avogadro, where it can
be visualized, modified, or exported. If the user would like to
add a bit of “intelligent design” to the evolutionary process, a
structure can be modified and then resubmitted using a context
(right-click) menu from the progress table. The context menu
provides tools to (un)kill a structure, resubmit for local opti-
mization at an arbitrary optimization step, or replace a prob-
lematic structure with a new, random individual.

Appendix A.8. View trends
Another visualization and analysis tool available during the

search is the interactive plot. Shown in Figure ??, the plot is
capable of investigating trends in the search by plotting a point
for each individual using structure number, generation num-
ber, enthalpy, energy, PV enthalpy term, lattice parameters, or
cell volume on either axis. This powerful feature allows the
user to visualize complex relationships present in the generated
structures. E.g., a plot of enthalpy vs. structure number pro-
vides an overview of the search’s progress. Or, recalling that
H = U + PV , plotting enthalpy vs. PV enthalpy term or en-
ergy lends insight into whether the enthalpy (H) is dominated
by atomic interactions (U) or cell parameters (PV). Further
information is available by labeling the points with the individ-
ual’s spacegroup number, Hermann Mauguin spacegroup sym-
bol, enthalpy, energy, PV term, volume, generation, or index
number.

A particularly useful plot is that of enthalpy vs. cell vol-
ume, as shown in Figure ??. From this view, one clearly sees
a general trend that enthalpy increases with volume (the effect
is much more pronounced for systems at higher pressures), and
also that below a certain volume enthalpy rises sharply. From
this data set, we see that there is a cluster of very low en-
thalpy structures around 180 Å3. Armed with this data, we can
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Figure A.8: The “Optimization Settings” tab

update the starting volume on the Cell Initialization tab mid-
run to reflect this new piece of information that the search has
provided us and enforce this limit on all newly generate struc-
tures. Many of the other parameters governing structure gener-
ation and algorithm specifics can be similarly modified during
a search without the need to restart the algorithm.

The plot is also interactive; zooming and panning are possi-
ble using simple mouse controls. Clicking on a structure’s point
in the plot will load it in the main Avogadro window, allow all
the same functionality as described above in the progress table
section.

Appendix A.9. Endpoints

Unfortunately, there are no hard rules for determining when
a search should be stopped while investigating an unknown sys-
tem. Hooper et al.[28] recommend searching until the four best
structures are the same for five generations (or approximately
50 structures in the continuous mode). This is no guarantee for
success, but provides a starting point. We recommend experi-
menting with a few known systems to develop a feel for telling
when a search completes, and use Hooper’s rule as a guideline
along the way.
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Figure A.10: The “Progress” tab mid-run
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Figure A.11: The “Plot” tab mid-run displaying enthalpy vs. volume. Each structure is labeled with its Hermann Mauguin spacegroup symbol.
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