RandSpg: an open-source program for generating
atomistic crystal structures with specific spacegroups

Patrick Avery?, Eva Zurek®*

“Department of Chemistry, State University of New York at Buffalo, Buffalo, New York,
14260-3000

Abstract

A new algorithm, RanDSpG, that can be used to generate trial crystal structures
with specific space groups and compositions is described. The program has been
designed for systems where the atoms are independent of one another and it is
therefore primarily suited towards inorganic systems. The structures that are
generated adhere to user defined constraints such as: the lattice shape and size,
stoichiometry, set of space groups to be generated, and factors that influence
the minimum interatomic separations. In addition, the user can optionally spec-
ify if the most general Wyckoff position is to be occupied or constrain select
atoms to specific Wyckoff positions. Extensive testing indicates that the algo-
rithm is efficient and reliable. The library is lightweight, portable, dependency-
free and is published under a license recognized by the Open Source Initiative.
A web interface for the algorithm is publicly accessible at http://xtalopt.
openmolecules.net/randSpg/randSpg.html. RanDSpPG has also been inter-
faced with the XtaLOpt evolutionary algorithm for crystal structure prediction,
and it is illustrated that the use of symmetric lattices in the first generation of
randomly created individuals decreases the number of structures that need to be
optimized to find the global energy minimum.

Keywords: Crystal; Crystal Structure; Structure Prediction; Computational
Crystallography; Symmetry; Space Group; Wyckoff Position; Wyckoft Site;
Inorganic Materials

*Corresponding author.
E-mail address: ezurek @buffalo.edu (E. Zurek)

Preprint submitted to Computer Physics Communications January 6, 2018

http://xtalopt.openmolecules.net/randSpg/randSpg.html
http://xtalopt.openmolecules.net/randSpg/randSpg.html

PROGRAM SUMMARY

Program Title: RandSpg

Licensing provisions: BSD 3-clause [1]

Programming language: C++

Nature of problem: Trial structure models are required for: (i) determining the crystal
structure of a compound given its powder X-ray diffraction data using the direct space
method, (ii) creating the first set of individuals using a priori crystal structure prediction.
For both of these problems the initial guess can greatly influence the success rate of the
algorithm used for structure determination, especially for crystals with large unit cells.
The unit cells of over 99% of inorganic crystals possess some element of symmetry, and it
may be possible to obtain partial information about their crystal structures experimentally.
Therefore, an algorithm that is able to create trial structures with user defined constraints
including the crystal’s composition, space group and unit cell parameters is desired.
Solution method: The RaNDSPG algorithm is able to determine every possible combination
of Wyckoff positions for a given space group and composition. The algorithm randomly
picks one of these combinations and adds atoms to particular Wyckoft sites wherein the
Cartesian coordinates are chosen randomly such that they satisfy user-defined minimum
interatomic distance constraints. In addition, the program can optionally generate crystals
where user-defined atoms are placed at specific Wyckoff sites.

References:
[1]http://opensource.org/licenses/BSD-3-Clause

http://opensource.org/licenses/BSD-3-Clause

1. Introduction

Unique symmetry distributions have been observed in different classes of ex-
tended systems. Over 80% of organic crystals possess the space groups P2;/c
(36.6%), P1 (16.92%), P2,2,2, (11.00%), C2/c (6.95%), P2, (6.35%) and Pbca
(4.24%). The three most frequent space groups for inorganic systems are Pnma
(8.25%), P2,/c (8.15%) and Fm3m (4.42%) [1]], and less than 1% of inorganic
crystals belong to the P1 space group [2]. The fact that symmetry is prevalent in
extended matter implies that imposing symmetry constraints may be able to help
accelerate the determination of an unknown crystal structure.

In certain situations powder diffraction using X-rays or neutrons must be em-
ployed to solve a structure because single crystals are not available. These tech-
niques are more difficult because the diffraction peaks overlap and it may not be
possible to obtain structure factor amplitudes. One way to solve structures from
powder diffraction is by using “direct space” or “model building” methods [3].
These approaches use global optimization techniques, such as simulated anneal-
ing or genetic/evolutionary algorithms (GAs/EAs), to generate model structures
whose calculated diffraction patterns are compared to those obtained experimen-
tally. In some cases the crystal energy, atomic coordination and other factors may
also be employed to determine a structure’s fitness (likelihood of acceptance or
chance of procreation).

The first step in structure determination is to find those unit cells and space
groups that could potentially reproduce the experimental diffraction data. Typi-
cally a list of possibilities, along with their ranking, are obtained. These candidate
solutions are employed by the global optimization method that carries out the
search. In the case of molecular crystals, bond distances, angles, dihedrals and
connectivity constraints are employed to reduce the number of degrees of free-
dom (DoF), thereby simplifying the search. Building suitable trial structures for
non-molecular compounds is more difficult, however the number of DoF can be
reduced by using building blocks such as coordination polyhedra. Another way
to accelerate the determination of the structure of atomistic systems is by using
randomly generated unit cells that adhere to the experimentally determined sym-
metry constraints. Towards this end Deng and Dong wrote the program SMEPOC
[4,15]. SMEPOC determines all possible Wyckoff positions that yield a particular
chemical composition; these are referred to as equivalent position combination
(EPC) models. SMEPOC can be thought of as an automation and generalization
of EPC techniques employed by pioneering crystallographers that solved crystal
structures manually [6].

Another instance where the generation of random structures with symmetry
constraints is useful is in a priori crystal structure prediction (CSP) [8]. CSP is
also carried out via global optimization schemes, however the fitness of a given
individual can be determined without recourse to experimental information. In-
stead, fitness is related to the structure’s energy or enthalpy as computed with a
program based on empirical potentials or first-principles methods such as DFT. Of
course, if experimental data is available it can be used to simplify and accelerate
the search , however it is not required.

Programs for CSP typically begin by generating a “chemically sensible” ran-
dom set of individuals whose geometries are optimized to the nearest local min-
imum, and whose energies/enthalpies are employed to determine fitness. Unfor-
tunately, the likelihood that purely random structures will be low in energy is
inversely proportional to the number of atoms in the unit cell. It has been shown
that systems with very low or very high energies tend to be symmetrical [9, [10].
This suggests that imposing symmetry constraints on otherwise randomly gener-
ated structures may facilitate the exploration of low-lying regions of the potential
energy surface. Some of the global optimization schemes for CSP where genera-
tion of symmetric structures has proven to be useful are random searches [11-13],
particle swarm optimization (PSO) [[14] and EAs/GAs [15,16].

For molecular compounds, random crystals with specific space groups are typ-
ically generated by taking the molecule or asymmetric unit and applying symme-
try operations to it (“duplicating” it) until the correct space group is obtained.
This method has proven to be successful in molecular CSP [11,[12]. If prior con-
nectivity and relative placement of atoms are already known, this dramatically
decreases the number of DoF, and thus the search may be much simpler. One
potential downfall of this approach, however, is that it may yield structures with a
large number of formula units in the primitive cell. Because of the lack of connec-
tivity constraints, algorithms that can be used for non-molecular (often inorganic)
systems typically use different approaches, as described below.

In the ab initio random structure searching (AIRSS) algorithm candidate indi-
viduals are either created randomly (using symmetry constraints) or via mutations
of structures that were found to be particularly stable [13]. Symmetry constraints
are also available in the CALYPSO (Crystal structure AnaLYsis by PSO) program

4

[14]. CALYPSO generates a crystal with a specific space group by finding a set
of Wyckoff positions from that space group that yield the correct composition and
then adding atoms to these sites. The first set of individuals is constructed using
symmetry constraints, and future structures are made by PSO. Tests on a super-
cell of TiO, showed that the global minimum, rutile, could be found much more
quickly by CALYPSO when symmetry constraints were employed [[17].

A particularly popular set of methods in CSP are EAs/GAs, and many pro-
grams are available [15 [18-31]. The first generation of individuals in an EA
search are randomly constructed, and child structures are made via mutations of
a single parent or combinations of two parents. One of the most popular EA
programs, USPEX, can impose symmetry constraints on the systems comprising
the first generation in two different ways [[15} [16]]. The “cell-splitting” technique
imposes translational symmetry by replicating subcells of randomly generated co-
ordinates. Tests on a supercell of silica, Si»4O4g, showed that the average number
of generations required to find the coesite structure decreased from 20.35 to 14.08
when cell-splitting (and an improved version of the heredity operator) were em-
ployed [[15)]. A few years later a symmetry operator that enabled the generation
of all of the 230 space groups via adding atoms to specific Wyckoft sites was im-
plemented within USPEX [16]. The way in which USPEX generates symmetric
crystals is by adding atoms to the most general Wyckoff position of a space group
that is compatible with the unit cell composition. Atoms may also be added to
more specific Wyckoff positions to achieve the right stoichiometry. If the distance
between two atoms related by symmetry is smaller than a tolerance set by the
user, their coordinates are averaged. It was shown that USPEX could predict the
structure of the garnet pyrope (Mg,4Al;6Si240g6) With 160 atoms in the cubic unit
cell when the cell parameters were fixed, and various improvements to the code,
including symmetric initialization, were employed [16].

Despite the fact that a number of programs are available that can generate
crystals with particular space groups, only SMEPOC is able to determine every
possible combination of Wyckoft positions for a given composition. SMEPOC,
however, is not available under a license that is recognized by the Open Source
Initiative (OSI) [32] (eg. the Gnu Public License, GPL, or Berkley Software Dis-
tribution, BSD). In fact, AIRSS, CALYPSO and USPEX are also not distributed
under OSI-approved licenses. This means that the code used within these pro-
grams is not generally available and cannot be re-used and included in other pro-
grams. Therefore, we have written RANDSPG, an open-source program that can
find every possible combination of Wyckoff positions for a given composition. In
addition to a number of standard options (eg. volume and interatomic distance

5

constraints), advanced options that are not available in other programs can be set.
For example, the user can decide whether or not the most general Wyckoff position
should be employed, and atoms of different types can be placed on user-specified
Wyckoft positions. RANDSPG is available as a standalone program, and it has also
been incorporated into the open source evolutionary algorithm XtarOpt[18-20].
Herein, we describe the algorithm and test its success rate in generating structures
with the right space group, and its impact on evolutionary algorithm performance.

2. Algorithm details

2.1. Finding all possible combinations of Wyckoff positions

The most general Wyckoff position has the highest multiplicity, and the atoms
found on it do not lie on any symmetry elements. The remaining sites are the so-
called special positions, and the atoms that occupy these sites reside on symmetry
elements of the cell. A Wyckoff position is unique if all of its coordinates are
fixed, that is, they do not contain variables. A unique position can only be used
once, whereas one that is not unique can be used an infinite number of times.
Consider for example space group 63; the coordinates for its Wyckoff positions
are provided in Table The most general Wyckoft position is 164, and 4a is
unique while 4c is not.

RANDSPG finds all possible combinations of Wyckoff positions for a particular
composition. It begins by determining all of the possibilities for a single atom
type. A doubly recursive function is employed towards this end, and a flow chart
illustrating the procedure is given in Figure [I] Basically, the function tries to use
every Wyckoft position (in combination with the other sites) at least once, at least
twice, etc. until it cannot use it anymore. A position is considered unusable if it has
a higher multiplicity than the number of atoms left, or if it is unique and is already

Multiplicity | Wyckoff Letter | Site Symmetry Coordinates (0,0,0) + (1/2,1/2,0)

16 h 1 (x,y,2) (-x,-y,z+1/2) (-x,y,-z+1/2) (x,-y,-2z)
(-x,-y,-z) (x,y,-z+1/2) (x,-y,z+1/2) (-x,y,2)

8 g ..m (x,y,1/4) (-x,-y,3/4) (-x,y,1/4) (x,-y,3/4)

8 f m. . ,y,z) (0,-y,z+1/2) (0,y,-z+1/2) (0,-y,-z)

8 e 2.. (x,0,0) (-x,0,1/2) (-x,0,0) (x,0,1/2)

8 d -1 (1/4,1/4,0) (3/4,3/4,1/2) (3/4,1/4,1/2) (1/4,3/4,0)

4 c m2m (0,y,1/4) (0,-y,3/4)

4 b 2/m. . (0,1/2,0) (0,1/2,1/2)

4 a 2/m. . (0,0,0) (0,0,1/2)

Table 1: The Wyckoff positions for space group 63 (Cmcm) [33]. The post-perovskite structure of
MgSiO; in Fig. 2] crystallizes in this space group.

=[findAllCombinations()

findAllCombinations() is for finding
all Wyckoff position combinations
that result in the correct number of
atoms for a single atom type.

h A

Note: All positions
begin active until they x = getFirstActivePosition().

are deactivated ; "
is position x usable?
Note: positions are 'usable' if they have
a multiplicity less than the number of
currently unassigned atoms. Also, if the ves no
position is unigue, it must not already be
in use.

h A

Try using x.
Did we use every atom?

no es
step 1 v

1. Find all combinations with x| | Add solution to solution set.

2. When finished, find all Then proceed to find all
combinations without x combinations without x
step 2
h 4
(Try not using x

> Deactivate position x
LFind all combinations without x

Figure 1: Flow chart for finding all possible combinations of Wyckoff positions for a single atom
type.

in use. For example, in the mantle of the earth, Mg,Si,0,, forms a Cmcm (space
group 63) structure called post-perovskite, illustrated in Figure 2] From Table [T}
it can be seen that all possible combinations of Wyckoff positions for O would
be the following: {8g,4c}, {8g,4b}, {8g,4a}, {8f,4c}, {8f,4b}, {8f,4a}, {8e,4c},
{8e,4b}, {8e,4a}, {8d,4c}, {8d,4b}, {8d,4a}, {4c,4c,4c}, {4c,4c,4b), {4c,4c,4al,
and {4c, 4b, 4a}. Note that because 4c¢ is not unique, it may be re-used, but because
4a and 4b are unique, they may not be re-used.

After all combinations have been found for all of the individual atom types, a
cross join is performed between the different types thereby yielding the possible

Figure 2: Structure of post-perovskite, a high-pressure phase of MgSiO;. Mg atoms are green, Si
atoms are yellow, and O atoms are red.

combinations of Wyckoff positions for the whole system (these are called “system
possibilities” in the program). Since the individual possibilities for both Mg and
Si are {4c}, {4b}, and {4a}, a cross join between their possibilities would yield:
{Mg : 4c,Si : 4c}, {Mg : 4c,Si : 4b}, (Mg : 4c,Si : 4a}, (Mg : 4b,Si : 4c},
{Mg : 4a,Si : 4c}, {Mg : 4b,Si : 4a}, and {Mg : 4a,Si : 4b}. Note that because
4c is not unique, it may be occupied any number of times. However, since 4b
and 4a are unique, they may be occupied by either Mg or Si, but not both. Thus,
cross joins that result in a unique Wyckoff position being used more than once are
discarded.

After the cross join is completed, all possible combinations have been found.
If the user specifies Wyckoft position constraints (for example, Mg is forced to be
in Wyckoft position 4b), any combinations that do not satisfy these constraints are
removed. In addition, if the user specifies that the most general Wyckofl position
is to be occupied at least once, any combinations that do not employ the most gen-
eral site are removed as well. For the real post-perovskite structure, the Wyckoft
positions are as follows: {Mg : 4c,Si:4a,0 : 8f, O : 4c}.

For large systems, the number of possible combinations of Wyckoft positions
can become exceptionally large. In order to remove this computational bottleneck
from the program, sites that have the same multiplicity and uniqueness (they are
both unique or not unique) are grouped together. For the combinations of Wyckoft

8

positions given above for O;, with a space group of 63, the list shortens to the
following: {1(8g,8f,8e),4c}, {1(8g,8f,8e), 1(4b,4a)}, {8d,4c}, {8d,1(4b,4a)},
{4c,4c,4c}, {4c,4c¢,1(4b,4a)}, and {4c, 4b, 4a}. In this notation, n(a, b, c...) means
choose n of the Wyckoff positions given in parentheses. For example, 1(4b, 4a)
means to choose either 4b or 4a. For this example, the grouping reduced the num-
ber of combinations for Oj, from 16 to 7. This method dramatically improves the
speed of RanDSPG — especially for large systems and space groups with numerous
sites. After all of the possible Wyckoff positions are found, one set is randomly
chosen and the variables in its coordinates are determined as described in Sec.

2.2. Generating the Lattice Parameters

The lattice vectors and angles that are permissible depend upon the space
group that is chosen. A simple example is that of a cubic lattice for which
a=>b=cand @ = =7y =90.0°. When RANDSPG generates a lattice, it chooses
the values randomly within the constraints of the crystal type for the given space
group and the minimum and maximum values for the lattice vectors and angles
set in the input file by the user (see Sec. [3). Next, the lengths are scaled so that the
volume of the crystal falls within the permissible minimum and maximum values.
If this rescaling moves a lattice parameter outside of its allowed range, the crystal
gets discarded and a new lattice is generated. Note that only hexagonal cells are
used for trigonal systems within RanpSpc. If the lattice parameters requested in
the input file are not compatible with the requested space group, an error mes-
sage is printed to the screen indicating that a crystal of the right shape cannot be
generated with the current settings.

2.3. Adding the atoms to the lattice

Once all of the possible combinations of Wyckoff positions have been found,
and the lattice has been generated, RanpSpG chooses one of the combinations of
Wyckoft sites (so-called “atom assignments”) randomly. Values for the variables
in the Wyckoff position coordinates are randomly generated, and atoms are added
to the cell according to the symmetry at the given site. This procedure is repeated
until all coordinates are found for all of the atoms required for the desired com-
position. After the addition of each atom, RanpSpG checks to make sure that in-
teratomic distance constraints were not violated. The minimum distance between
two atoms is obtained by finding the sum of their radii (the default is the covalent
radii in OpenBabel [34], but the user may override these defaults as described in
Sec.[3). If an atom that is added to the cell is too close to the other atoms within
the structure, it is removed and, if its Wyckoff site contains a variable, a new set

9

of random numbers is generated for it. RANDSPG makes
attempts to find suitable coordinates for the atom.

. If it fails, a new lattice is generated, and a new set of
atom assignments from the possible Wyckoff combinations is made. The number
of attempts that the program makes to generate coordinates for a
given space group can be set in the input file.

Adding atoms to the unit cell is certainly the bottleneck in the program, es-
pecially if the user specifies large radii and a small volume for the crystal. In
addition, this procedure becomes more time consuming for larger unit cells. The
reason for this is that it becomes more difficult to satisfy the minimum interatomic
distance constraints. A larger number of different atom types also slows down the
code: as shown in Sec.[#.2] generating acceptable coordinates for quaternary sys-
tems with up to 60 atoms in the unit cell required, on average, about 5 seconds,
whereas a similar sized ternary system required, on average, 1 second.

3. Computational Details

3.1. Basic Usage

RaANDSPG is written in C++ and does not employ any external dependencies,
allowing for ease of use and compilation. Compiling RanpSpG requires CMake
and a C++ compiler with C++0x capabilities. The library was built and tested us-
ing g++4.8.4 on Linux and MSVC 2013 on Windows. Instructions for compiling
the program are provided in the README file.

A sample input file is illustrated in Fig. [3] This file is also provided in the
root directory of the program package. The composition and space groups to be
generated are the only input required for RANDSPG to run, all other parameters
will employ default values unless otherwise specified. For the program to gener-
ate chemically sensible structures it is important to choose reasonable values for
the allowed minimum and maximum volumes. Moreover, an appropriate choice
for the atomic radii and scaling factors, which are important for determining the
minimum interatomic distances, must be provided. If these values are not chosen
judiciously, atoms may overlap or be too far apart to form bonds. The minimum
and maximum volumes are bounded by the range of lattice parameters. If the user
specifies a range outside of these bounds an error message is printed. The default
radii are the covalent radii employed in OpENBABEL [34], and the default scaling
factor is 1.0. In certain situations, such as conditions of extreme pressure, it may
be desirable to set the scaling factor to a value less than unity. Providing the

10

Anything to the right of a hash is a comment
Composition is set by atomic symbols followed by number as such:
composition = MgdAl2

The spacegroups to generate are set as follows (hyphens and commas work)
spacegroups = 1-8, 18, 25, 2B, 3B-32

lattice mins and maxes set constraints on the lattice to be generated.
Distances are in Angstroms and angles are in degrees.

a, b, c, alpha, beta, gamma
latticeMins = 3.8, 3.8, 3.8, GB.B, GB.B, GB.B
latticeMaxes =16.8, 16.6, 16.68, 126.8, 126.8, 128.8

minVolume and maxVolume specify constraints on the wolume in Angstroms

If a crystal's wolume is not within this range, it will be rescaled so that

it is. If the minVolume tag is removed or specified to be -1, there will be no
minVolume. The same goes for maxVolume.

minVolume = 458

maxVolume = 588
numDfEachSpgToGenerate tells us how many crystals of each spg to generate
numlfEachSpgToGenerate = 3

For adwanced users: by default. the program will only generate a spacegroup
for a crystal if it can use the most general Wyckoff position at least

once. This is because the spacegroup is not guaranteed if the most

general Wyckoff position is not used at least once. The user, however,

may turn off that option here by setting it to false. If this is the case,
more spacegroups may be generated for a particular composition, but there is
a chance that it won't be the correct spacegroup.

#forceMostGeneralWyckPos = false

A A A Ak I A

For advanced users: this allows us to force an element to be assigned

to a specific Wyckoff position. If you wish to force an element to be in

the same Wyckoff position multiple times, just repeat the tag multiple times
(i. e. add "forceWyckPos Mg = a" on as many lines as you want to force the
Wyckoff position).

#forceWyckPos Mg = a

We can set minimum radii (Angstroms) for individual atoms
#setRadius Ti = 8.5

or for all atoms. A min radius for an individual atom gets precedence owver
this one. If the default min radius of the atom is less than this input

value, then the min radius of that atom is set to be this value.

Units are in Angstroms.

setMinRadii = 8.3

This scaling factor will scale all radii that were not explicity set.
The new radii are equal to radius * scalingFactor

This is useful, for example, when changing the pressure of a crystal.
scalingFactor = 8.5

This sets the maximum number of attempts to generate any given spacegroup
maxAttempts = 188

This sets the output directory
outputDir = spgGenlut

Verbosity indicates how much output to generate in the log file
'n" is no output, "r" is regular output, and "w" is wverbose output
werbosity =T

Figure 3: Sample input file for RanpSpc. This file is available in the program package.

11

ranges for the lattice parameters may be useful, especially if experimental data
is available. The defaults are 3-10 A for the lattice lengths and 60-120° for the
angles. The user can specify how many structures should be generated for each
space group; by default this value is one.

#*%* The duplicated section (mentioned by the reviewer) was removed
from here. ***

By default, RaAnDSpG always uses the most general Wyckoff position (the po-
sition with the highest multiplicity) at least once because an incorrect space group
may be generated otherwise. The reason for this is that some of the more specific
Wyckoft positions are identical for different space groups. The user may override
this default by changing the tag “forceMostGeneralWyckPos” to false, but there
is a chance that the structures that are generated will not have the desired space
group. Itis also possible to force certain elements to occupy user-defined Wyckoft
positions.

If any problems are encountered during the program execution, an error mes-
sage will be printed to stdout or stderr. The log file provides the values of the
parameters that were employed, and states if they were the default settings. Out-
put files are named as <composition>_<spg>-<index> and saved in a directory
whose name may be specified by the user.

3.2. Integration into a Program

For implementing these functions into a C++ program, one simply needs to
create a randSpglnput object and use it to call RandSpg::randSpgCrystal(). The
function returns a crystal object

. The
options that can be employed in randSpglnput are described in the README file
of RanDSPG or in the header file include/randSpg.h. The README file also con-
tains instructions on how to create a randSpgInput object and how to call Rand-
Spg::randSpgCrystal(). Information for some of the useful functions in the Crystal
class is provided in the README file as well.

A web interface to RANDSPG is publicly available at
http://xtalopt.openmolecules.net/randSpg/randSpg.html.

12

3.3. Empirical Potentials

In Sec. we report the results of tests that were carried out to determine the
success rate of generating the global energy minimum of titanium dioxide com-
pletely randomly as compared to when RanpSpG was employed. Further tests were
used to gauge if the performance of the evolutionary algorithm XtaLOpt would
improve if symmetric structures created with RANDSpG were used in the first ran-
dom generation of individuals. A 16 formula unit supercell of TiO, was chosen
for these tests, and the geometry optimizations were carried out using the GULP
optimizer [40-42]] and the empirical parameter set previously employed in Ref.
[18]]. This system was chosen as a test case based on the availability of the poten-
tial and because it has been used to benchmark the performance of XtaLOpT and
other programs for crystal structure prediction [[16H18], 43-435]]. The global mini-
mum structure of TiO, is rutile with 6 atoms per unit cell and the computational
protocol employed yielded a volume of 10.40 A3/atom, and minimum interatomic
distances of 2.49, 3.52, and 1.93 A for the O-0, Ti-Ti and Ti-O contacts.

4. Results

4.1. Accuracy

To test the reliability of the program we created ten crystal lattices for every
space group ensuring that the most general Wyckoft position was employed. In or-
der to guarantee that a crystal could be generated for the given crystal type the fol-
lowing compositions were used for triclinic, monoclinic, orthorhombic, tetrago-
nal, trigonal, hexagonal and cubic lattices: TiyOy, TisOg, Ti1603;, Tir4O36, Ti24036
and TigsO19,, respectively. The input files for these tests may be found in the git
repository [46] under samples/accuracyTests. Next, the space groups of the crys-
tals were determined using the FINDSYM algorithm [47/, 48] and a tolerance of
0.0001 A. For the 2300 structures that were made the success rate was 100%. In
addition, the same test was performed for cells generated wherein the requirement
to use the most general Wyckoff position at least once was removed. Using a tol-
erance of 0.0001 A, the success rate was 98.2%. That is, 2,258 lattices that were
created with RanpSpc were identified to have the correct space group via FIND-
SYM. These high success rates illustrate that RANDSPG can reliably make random
atomistic crystals with specific space groups. In general, the lower the multiplic-
ity of a particular Wyckoff position, the greater the likelihood that it is common to
a number of space groups. Thus, solely using more specific (lower multiplicity)
Wyckoft positions increases the chances of generating structures with the wrong

13

space group. However, as the above tests illustrate, employing the most general
Wyckoff position is sufficient to ensure that the correct space group is created.

4.2. Performance

Tests were performed using a single processor on a 1.7 GHz AMD Athlon(tm)
X4 860K Quad Core Processor. The code was optimized using the Callgrind tool
of Valgrind [49]. Tests revealed that adding atoms to the lattice was the main
bottleneck of the program. In this step RanoSpc randomly chooses the variables
in the Wyckoff positions, checks to determine if the minimum interatomic dis-
tances constraints are satisfied, and chooses another set of variables if they are
not. Because decreasing the atomic radii and increasing the volume increases
the minimum interatomic distances that are allowed, these parameters affect the
amount of time it takes to generate acceptable coordinates for a particular system
and space group. However, care should be used when choosing these parameters
because volumes that are too large and interatomic distances that are too small
will yield structures that are chemically not sensible. Clearly, a greater amount of
atoms or atom types that comprise the unit cell, and space groups that have a large
number of Wyckoff positions increases the amount of time required to generate a
lattice.

Figs. [and [3] illustrate the results of a few of the speed tests that were per-
formed on structures with the (TiO,), stoichiometry. The scaling factor and min-
imum radius employed yielded atomic radii of 0.33 A for oxygen and 0.8 A for
Ti. The range of allowed volumes was (10 + %) A3/atom where 7 is the number
of atoms. The inputs for these tests may be found in the program package under
samples/speedTests. The results shown in Fig. 4] were obtained by generating ten
structures for each space group and averaging the results, whereas each data point
in Fig. [5| was obtained for an average of one hundred individuals. Note that in-
stances where the algorithm failed to create a set of coordinates were not included
in these averages because this usually happened when no combination of Wyck-
off positions for the space group could satisty the requested composition. When
these failures occurred they were fast because RANDSPG first determines if the sto-
ichiometry/space group combination is possible prior to attempting to generate
coordinates.

Fig. {] provides the average time it took to generate a valid crystal with the
(TiO,), stoichiometry vs. the total number of atoms in the cell, 3x. Because some
combinations of space group and composition were impossible (eg. because each
Wyckoff position in space group 8, Cm, has an even multiplicity it is impossible
for a structure with this symmetry to contain an odd number of atoms), and some

14

n
[6)]
T

N
T

—
T

Average Success Time (s)
-(D —
(&) (&)

0—%—30 20 30 40 50 60 70 80 90

Number of Atoms

Figure 4: Average time required for generating a structure with RanpSeG for the (TiO,), stoi-
chiometry vs. the total number of atoms in the unit cell (3, 15, 30, 45, 60, 75, and 90). The data is
provided by the points and the lines are a guide to the eye.

space groups require a longer time to generate acceptable coordinates, one cannot
make a direct comparison between each set of runs. In general the time required
to make a structure increases with increasing number of atoms in the unit cell.
Note that for cells with a large odd number of atoms, such as 45 and 75, the time
was longer than for systems that were similar in size but had an even number
of atoms. The reason for this is that it is easiest to generate cells with fewer
Wyckoft positions wherein each Wyckoff position has a small multiplicity. And,
the Wyckoff positions in these types of “simple” space groups tend to have even-
numbered multiplicities, so they can therefore not accommodate an odd number of
atoms. For example, space group 8 has two Wyckoff positions with multiplicities
of two and four. A few other “simple” space groups that have three or fewer
Wyckoff positions with multiplicities of two and four are 4, 5, 7, and 9. This is a
major factor that decreases the average success time of even-numbered cells (30,
60, and 90).

15

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

Average Success Time (s)

0.05

0 20 40 60 80 100 120 140 160 180 200

Spacegroup Number

Figure 5: Average time required for generating a structure with RaNDpSpG for the TizpOgp stoi-
chiometry vs. the space group number. The space groups tested were 1 (P1), 3 (P2), 5 (C2), 10
(P2/m), 59 (Pmmn), 100 (P4bm), 125 (P4/nbm), 150 (P321)), 174 (P - 6), and 200 (Pm — 3). The
data is provided by the points and the lines are a guide to the eye.

In Fig. [5] the average success times are provided for particular space groups
and the (TiO,);3(stoichiometry. It can be clearly seen that there is no consistent
trend with the space group number. This is also evident in the fact that it took
less than half a second to create structures for the space groups tested in Fig. [5]
whereas the average over all possible space groups for the 90 atom system in Fig.
M] is closer to one second. Importantly, on average it took 3 seconds or less to
create binary structures with up to 90 atoms in the unit cell. This suggests that the
generation of symmetric structures in the first set of individuals in CSP will not
be a bottleneck in the search.

Further tests were carried out to deduce how the number of atom types influ-
ences the time required to create an individual. All of the cells contained a total
of 60 atoms and up to four different types. The stoichiometries employed were
Ti6(), Ti3003(), TigoMgzoOQO, and Ti]5Mg15Si15015. The volumes ranged from 790

16

to 810 A3, the scaling factor was 0.5, and the default radii were employed. Ten
structures of every possible space group were generated, and the results were av-
eraged. Fig. [0]illustrates that the average time required to make a structure was
one second or less for the ternary, binary and single component systems. How-
ever, for Ti;sMg;5S1150,5 the average time rose to five seconds suggesting that
the algorithm may scale exponentially with the number of atom types comprising
the cell. Thus, it might be prohibitively computationally expensive to construct
extremely large unit cells with many different atom types using RANDSPG in com-
bination with CSP. However, in many situations this is unlikely to be necessary;
for example most CSP searches employ on the order of 20-50 randomly generated
structures for the first set of individuals. In addition, the structural optimizations
will likely be the bottleneck in searches on large and complicated unit cells, even
if empirical potentials are employed.

6
Ol
(O]
£ 4
|_
(2}
O
o 3
(&)
>
n
o 2
(@]
©
S
(O]
> 1r
<
0 I I I I
1 1.5 2 2.5 3 3.5 4

Number of Types

Figure 6: Average time required to generate structures with RANDSPG for a monoatomic (Tig),
binary (Ti3pOs30), ternary (TioMgr90O20) and quaternary (Ti;sMgisSij5015) system. The data is
provided by the points and the lines are a guide to the eye.

17

4.3. RanDSPG and Crystal Structure Prediction

Tests were carried out to determine if the use of randomly generated sym-
metric structures with RanpSpG improved the efficiency of computational CSP.
Towards this end 3250 crystalline lattices containing 16 TiO, units were made
with and without RaNpSPG and optimized using GULP as discussed in Sec. [3.3]
Fig. [/| illustrates the distribution of enthalpies obtained. In the set of structures
that were made completely randomly only 2 individuals (0.062%) yielded the ru-
tile supercell. In a previous study we found that 0.070% of the lattices obtained in
such a manner corresponded to rutile [18]], suggesting that our margin of error is
less than 0.01%. When RanpSpG as implemented within XTaLOpT was employed
and the space groups were chosen randomly, 58 of the lattices that were gener-
ated (1.78%) yielded the rutile structure. This is a significant improvement: for
completely random structures over 1600 are required to have some assurance the
rutile supercell is created, whereas this number drops to around 56 when RanoSpc
was employed.

The distribution of enthalpies for the structures that were created randomly
corresponded roughly to a Gaussian centered at around -622 eV with a spread of
-636.8 to -615.4 eV and a standard deviation of 5.3 eV (the enthalpy of the ru-
tile supercell was calculated to be -636.8 eV). When RanpSpc was employed the
range of enthalpies was significantly larger, -636.8 to +58.0 eV (standard devi-
ation of 98.3 eV), and even the data obtained for enthalpies lower than -615 eV
(see Fig.[/(c)) deviated significantly from the Gaussian distribution because of the
large number of low enthalpy structures that were generated. Symmetric struc-
tures tend to either be very stable or very unstable [9} [10], and this is the reason
for the much larger range of enthalpies obtained with RanpSpG. In fact, the av-
erage enthalpy of the purely random structures was -625.5 eV whereas for those
made with RANDSPG this number increased to -563.8 eV. This suggests that the
first set of individuals should be larger when using symmetry constraints in CSP.
Alternatively, if generating a larger first set of individuals is not possible, the
user could specify a larger number of structures with P1 symmetry.

Investigation of the unstable structures showed that they had high sym-
metry coupled with numerous oxygen atoms close to each other. The po-
tential employed uses a Coulombic interaction term with charges of -1.098¢
for oxygen and 2.196¢ for titanium. Such clusters of oxygen atoms are unfa-
vorable due to electrostatic repulsion, but the only way they can move apart
from each other while still keeping the high symmetry of the lattice is to in-
crease the volume. Indeed, all of the optimized high energy structures had
unreasonably large volumes. To overcome this problem, one could turn off

18

symmetry constraints in the external code used for geometry optimization,
or move a few of the atoms a small distance to break the symmetry.

80 80
70l Random (a) 70 Random (b)
60 60

> >

2 50 2 50

))

S 40 S 40

0 0

L 30 L 30
20 20
10 10
-640 635 -630 -625 - - 700 -600 -500 -400 -300 -200 -100 O

Enthalpy (eV) Enthalpy (eV)
80 80
70l RandSpg (C) 70 RandSpg (d)
60 60

> >

2 50 2 50

))

S 40 S 40

0 0

L 30 L 30
20, 20
10 10 \

T ! L

-640 NG -625 -620 615 -700 -600 -500 -400 -300 -200 -100 O
Enthalpy (eV) Enthalpy (eV)

Figure 7: Distribution of the enthalpies of 3250 generated crystals with the stoichiometry Ti;¢O3;.
The lattices were generated (a,b) randomly using XtaLOpt and (c,d) using RanboSpc as imple-
mented within XTaLOpT and then optimized with GULP. The same data is plotted in (a/b) and (c/d)
except a larger enthalpy range is employed to highlight that in (a/b) structures with enthalpies
larger than -615 eV were not located, whereas (c/d) generated many systems with enthalpies less
negative than -615 eV.

When the cell parameters and minimum interatomic distances between
pairs of atoms were fixed to match those found within rutile, a success rate of
23.8% was obtained. This clearly demonstrates that using the correct struc-
tural parameters and appropriate settings for the interatomic distances can
greatly speed up a structure search.

The CALYPSO program can also be used to create random structures with
symmetry constraints. A similar test wherein 3250 structures were generated for
a cell containing 16 TiO, units was performed [17]. The success rate for locat-
ing rutile was ~6.2%. Unfortunately, since the set of constraints that CA-
LYPSO used is not fully known, a direct comparison between RanpSpc and
CALYPSO is not possible. A discrepancy in the success rate between the

19

two codes may, however, arise because RanoSpc enumerates Wyckoff posi-
tions differently than CALYPSO since CALYPSO does not enumerate every
possible combination.

which is substantially larger than what was found here. The higher suc-
cess rate is likely due to two factors. First of all, within CALYPSO the user
can specify minimum interatomic distances between every set of atoms, and
the tests were carried out using distances that matched those found within
rutile. The RanpSpc tests carried out here, on the other hand, employed the
default radii used by OpenBabel since these would be the values employed
given no information about the system. Secondly, the way in which Wyckoff
positions are selected by CALYPSO is different than within RanpSeg, and this
is also likely to affect the results.

Further tests were carried out to determine if using RANDSPG to generate the
first set of random individuals within an evolutionary structure search could in-
crease the success rate and/or how quickly the global minimum structure is found.
We employed the EA XtaLOpt [18] version R9 [20] with the 16 formula unit
supercell of rutile as the target structure. Previous tests using an earlier version
of X1aLOpt showed that for 100 searches, the target structure was always found
when 280 individuals or less were made [43]].

Each of the following values were obtained by averaging the results of 20
runs, and within each run the rutile structure was found when 350 or fewer lat-
tices were optimized (only one run required 346 individuals to locate rutile, the
other searches found it in 226 structures or less). For an initial population of 20, it
took on average 107.7 optimized crystals using random generation and 72.3 opti-
mized crystals using RANDSPG to find rutile. For an initial population of 50, it took
on average 141.0 optimized crystals using random generation and 63.2 optimized
crystals using RanpSpa to find rutile. Thus, it can be seen that RANDSPG signifi-
cantly improves the efficiency of the EA. Note that when the first set of individuals
were generated purely randomly, increasing the initial population from 20 to 50
increased the average number of individuals that were required to find rutile by
about 30 as well. This illustrates that increasing the number of randomly gen-
erated structures did not improve the efficiency of the algorithm, and the reason
for this likely stems from the fact that the enthalpies of the generated structures
assumed a Gaussian-like distribution as illustrated in Fig. [/(a). However, when
RanDpSpG was employed the efficiency improved using a larger initial population.
The reason for this is that RANDSPG has the propensity to create many more low
(and high) enthalpy structures as compared with pure random generation, as il-
lustrated in Fig.[7(d). We therefore recommend that larger initial populations are

20

employed when RaNDSPG is used within an evolutionary structure search.

5. Conclusion

The RaNDSPG program can determine all possible combinations of Wyckoft
positions that are allowed for a particular space group and chemical composition.
Tests show that RanpSpc had a 100% success rate in generating coordinates for
crystals with a particular space group when the most general Wyckoff position
was employed at least once. If the requirement to use the most general site was
removed, a 98.2% success rate was achieved. The crystals that are generated
by RANDSPG are subject to a number of user defined constraints. This includes
minimum and maximum values for the lattice lengths and angles, and unit cell
volume. In addition, the user can specify if the most general Wyckoft position is
to be employed at least once and force atoms of different types to occupy specific
Wyckoft positions. The minimum interatomic distances allowed between atoms
can also be set.

RaNDSPG has been interfaced with the XTaLOpt [18-20] evolutionary algo-
rithm for a priori crystal structure prediction. Tests showed that when the initial
generation of individuals was created using RANDSPG, the evolutionary algorithm
was able to more quickly locate the global minimum structure as compared to
when symmetric constraints were not enforced. In the future RanpSpc may also
prove to be useful in structure determination from powder diffraction data via di-
rect space methods.

RANDSPG 1s written in C++ and it is published under the open source 3-clause
BSD license [S0]. The program can be run independently or within XtaLOpT. In
addition, a web interface is available on the internet at
http://xtalopt.openmolecules.net/randSpg/randSpg.html.

Acknowledgements

The authors thank Zack Falls for fruitful discussion regarding space groups
and Wyckofl positions. We acknowledge the NSF (DMR-1005413) and the ONR
(N000141612583) for financial support and the Center for Computational Re-
search (CCR) at SUNY Buffalo for computational support.

21

References

[1] H. B. Werner and D. Kassner, “The perils of cc: Comparing the frequencies
of falsely assigned space groups with their general population,” Acta Cryst.
B, vol. 48, pp. 356-369, 1992.

[2] V. S. Urusov and T. N. Nadezhina, “Frequency distribution and selection
of space groups in inorganic crystal chemistry,” J. Struct. Chem., vol. 50,
pp. S22-S37, 2009.

[3] R. Cerny and V. Favre-Nicolin, “Direct space methods of structure determi-
nation from powder diffraction: principles, guidelines and perspectives,” Z.
Kristallogr., vol. 222, pp. 105-113, 2007.

[4] X. D. Deng and C. Dong, “Smepoc - a computer program for the automatic
generation of trial structural models for inorganic compounds with symme-
try restriction,” J. Appl. Crystallogr., vol. 42, pp. 953-958, 2008.

[5] X. D. Deng and C. Dong, “Epcryst: a computer program for solving crys-
tal structures from powder diffraction data,” J. Appl. Crystallogr., vol. 44,
pp- 230-237, 2011.

[6] J. M. Reddy, A. R. Storm, and K. Knox, “The crystal structure of V2Ga5,”
Z. Kristallogr., vol. 121, pp. 441448, 1965.

[7] B. Meredig and C. Wolverton, “A hybrid computational-experimental ap-
proach for automated crystal structure solution,” Nat. Mater., vol. 12,
pp- 123-127, 2012.

[8] E. Zurek, “Discovering new materials via a priori crystal structure predic-
tion,” in Reviews in Computational Chemistry (K. B. Lipkowitz, ed.), vol. 29,
pp. 274-326, Hoboken, New Jersey: John Wiley & Sons, Inc., 2016.

[9] D.J. Wales, “Symmetry, near-symmetry and energetics,” Chem. Phys. Lett.,
vol. 285, pp. 330-336, 1998.

[10] D.J. Wales, “Erratum to ‘symmetry, near-symmetry and energetics’,” Chem.
Phys. Lett., vol. 294, p. 262, 1998.

[11] A. Asmadi, J. Kendrick, and F. J. J. Leusen, “Crystal structure prediction
and isostructurality of three small organic halogen compounds,” Phys. Chem.
Chem. Phys., vol. 12, pp. 8571-8579, 2010.

22

[12] A. Gavezzotti, “Polymorphism of 7-dimethylaminocydopenta[c]coumarin:

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Packing analysis and generation of trial crystal structures,” Acta Cryst. B,
vol. 52, pp. 201-208, 1996.

C. J. Pickard and R. J. Needs, “Ab initio random structure searching,” J.
Phys.: Condens. Matter, vol. 23, pp. 053201 (1-23), 2011.

Y. Wang, J. Lv, L. Zhu, and Y. Ma, “Crystal structure prediction via particle—
swarm optimization,” Phys. Rev. B, vol. 82, pp. 094116 (1-8), 2010.

A. O. Lyakhov, A. R. Oganov, and M. Valle, “How to predict very large and
complex crystal structures,” Comp. Phys. Comm., vol. 181, pp. 1623-1632,
2010.

A. O. Lyakhov, A. R. Oganov, H. T. Stokes, and Q. Zhu, “New developments
in evolutionary structure prediction algorithm uspex,” Comp. Phys. Comm.,
vol. 184, pp. 1172-1182, 2013.

Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, “An effective
structure prediction method for layered materials based on 2d particle swarm
optimization algorithm,” J. Chem. Phys., vol. 137, pp. 224108 (1-6), 2012.

D. C. Lonie and E. Zurek, “Xtalopt: An open-source evolutionary algorithm
for crystal structure prediction,” Comput. Phys. Commun., vol. 182, pp. 372—
387, 2011.

D. C. Lonie and E. Zurek, “New version announcement: Xtalopt version
r7: An open-source evolutionary algorithm for crystal structure prediction,”
Comput. Phys. Commun., vol. 182, pp. 2305-2306, 2011.

Z. Falls, D. C. Lonie, P. Avery, A. Shamp, and E. Zurek, “Xtalopt version
r9: An open-source evolutionary algorithm for crystal structure prediction,”
Comp. Phys. Commun., vol. 199, pp. 178-179, 2016.

C. W. Glass, A. R. Oganov, and N. Hansen, “Uspex—evolutionary crystal
structure prediction,” Comp. Phys. Comm., vol. 175, pp. 713720, 2006.

A. R. Oganov, A. O. Lyakhov, and M. Valle, “How evolutionary crystal
structure prediction works — and why,” Acc. Chem. Res., vol. 44, pp. 227—
237,2011.

23

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]

A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammerschmidt,
and R. Drautz, “New superconducting and semiconducting Fe-B compounds
predicted with an ab initio evolutionary search,” Phys. Rev. Lett., vol. 105,
pp- 217003 (1-4), 2010.

S. Bahmann and J. Kortus, “Evo - evolutionary algorithm for crystal struc-
tore prediction,” Comp. Phys. Comm., vol. 184, pp. 1618—-1625, 2013.

W. W. Tipton, C. R. Bealing, K. Mathew, and R. Hennig, “Structures, phase
stabilities, and electrical potentials of li-si battery anode materials,” Phys.
Rev. B, vol. 87, p. 184114, 2013.

W. W. Tipton and R. Hennig, “A grand canonical genetic algorithm for the
prediction of multi-component phase diagrams and testing of empirical po-
tentials,” J. Phys.: Condens. Matter, vol. 25, pp. 495401 (1-14), 2013.

S. Q. Wu, M. Ji, C. Z. Wang, M. C. Nguyen, X. Zhao, K. Umemoto, R. M.
Wentzcovitch, and K. M. Ho, “An adaptive genetic algorithm for crystal
structure prediction,” J. Phys.: Condens. Matter, vol. 26, pp. 035402 (1-6),
2014.

G. Trimarchi and A. Zunger, “Global space-group optimization problem:
Finding the stablest crystal structure without constraints,” Phys. Rev. B.,
vol. 75, pp. 104113 (1-8), 2007.

M. d’ Avezac and A. Zunger, “Identifying the minimum—energy atomic con-
figuration on a lattice: Lamarckian twist on darwinian evolution,” Phys. Rev.
B., vol. 78, pp. 064102 (1-15), 2008.

N. L. Abraham and M. I. J. Probert, “A periodic genetic algorithm with real-
space representation for crystal structure and polymorph prediction,” Phys.
Rev. B., vol. 73, pp. 224104 (1-6), 2006.

A. Fadda and G. Fadda, “An evolutionary algorithm for the prediction of
crystal structures,” Phys. Rev. B, vol. 82, pp. 104105 (1-8), 2010.

https://opensource.org/.
http://cryst.ehu.es/.

http://openbabel.org.

24

[35] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,”
Phys. Rev. B, vol. 47, pp. R558-R561, 1993.

[36] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and
G. R. Hutchison, “Open babel: an open chemical toolbox,” J. Cheminf.,
vol. 3, pp. 1-14, 2011.

[37] S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii,
R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H. T. Stokes,
D. O. Demchenko, and D. Morgan, “Aflow: an automatic framework for

high-throughput materials discovery,” Comput. Mater. Sci., vol. 58, pp. 218—
226, 2012.

[38] S. R. Bahn and K. W. Jacobsen, “An object-oriented scripting interface to a
legacy electronic structure code,” Comput. Sci. Eng., vol. 4, pp. 56—66, 2002.

[39] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia,
D. Gunter, V. Chevrier, K. A. Persson, and G. Ceder, “Python materials

genomics (pymatgen) : A robust, open-source python library for materials
analysis,” Comput. Mater. Sci., vol. 68, pp. 314-319, 2013.

[40] J. D. Gale, “Empirical potential derivation for ionic materials,” Philos. Mag.
B, vol. 73, pp. 3-19, 1996.

[41] J. D. Gale and A. L. Rohl, “The general utility lattice program (gulp),” Mol.
Simul., vol. 29, pp. 291-341, 2003.

[42] J. D. Gale, “GULP: a computer program for the symmetry-adapted simula-
tion of solids,” J. Chem. Soc., Faraday Trans., vol. 93, pp. 629-637, 1997.

[43] S. M. Woodley, P. D. Battle, J. D. Gale, and C. R. A. Catlow, “The pre-
diction of inorganic crystal structures using a genetic algorithm and energy
minimisation,” Phys. Chem. Chem. Phys., vol. 1, pp. 25352542, 1999.

[44] S. M. Woodley and C. R. A. Catlow, “Structure prediction of titania phases:

Implementation of darwinian versus lamarckian concepts in an evolutionary
algorithm,” Comput. Mater. Sci., vol. 45, pp. 84-95, 2009.

[45] D. C. Lonie and E. Zurek, “Identifying duplicate crystal structures: Xtal-
comp, and open-source solution,” Comput. Phys. Commun., vol. 183,
pp- 690-697, 2012.

25

[46] https://github.com/psavery/randSpg.
[47] http://stokes.byu.edu/iso/findsym.php.

[48] H. T. Stokes and D. M. Hatcha, “Findsym: program for identifying the

space-group symmetry of a crystal,” J. Appl. Crystallogr., vol. 38, pp. 237—
238, 2005.

[49] http://valgrind.org/.

[50] https://opensource.org/licenses/BSD-3-Clause.

26

	Introduction
	Algorithm details
	Finding all possible combinations of Wyckoff positions
	Generating the Lattice Parameters
	Adding the atoms to the lattice

	Computational Details
	Basic Usage
	Integration into a Program
	Empirical Potentials

	Results
	Accuracy
	Performance
	RandSpg and Crystal Structure Prediction

	Conclusion

