Publications


For information on how to cite XtalOpt in your own publications, please see the "How To Cite?" section below.

As a free software published under the "NEW" BSD license, we do not require co-authorship as a contractual obligation, nor do we request it. As the XtalOpt authors have not characterized or studied the chemical system in your application paper, we would consider such attribution unnecessary, perhaps even dishonest. A simple citation of the relevant articles is sufficient for most cases.

Moreover, XtalOpt's open-source license was chosen to encourage open collaboration and to lower the barrier to researchers interested in developing new predictive techniques. We welcome contributions and encourage independent method improvement. If significant effort has been made by the XtalOpt authors to assist in implementing your technique, we may request co-authorship. However, scholarly articles describing independent modifications to, improvements to, or characterization of the XtalOpt code may follow the same citation guidelines as an application paper.



How To Cite?


If you use XtalOpt for the prediction of a new structure, please cite the implementation paper and the latest version announcement, i.e.,

  1. David C. Lonie, Eva Zurek, XtalOpt: An Open-Source Evolutionary Algorithm for Crystal Structure Prediction, Computer Physics Communications 182 (2011) pp. 372-387 DOI:10.1016/j.cpc.2010.07.048

  2. Samad Hajinazar, Eva Zurek, XtalOpt Version 13: Multi-Objective Evolutionary Search for Novel Functional Materials, Computer Physics Communications 304 (2024) 109306 DOI:10.1016/j.cpc.2024.109306

We also ask that you cite the RandSpg manuscript, if you employ this method for creating new random structures, and the XtalComp manuscript if you use this method for comparing the structures in your work.



Method Papers


Detailed Implementation Papers

The formalism and implementation of the multi-objective evolutionary search in XtalOpt can be found here:


The following publication details the implementation of XtalOpt, examining NaH, TiO2, and SrTiO3 as benchmarking cases:


This paper describes the duplicate matching algorithm used by XtalOpt, named XtalComp, which is an open-source code downloadable from its Github repository and has a public web interface.


The following paper describes the open-source algorithm RandSpg, used by XtalOpt for the random symmetric initialization of crystals,
which can be obtained from its Github repository and has a public web interface.


A more recent overview of crystal structure prediction methods and new algorithm developments in XtalOpt is presented in the following article:


New Version Announcements



Applications


    2024

  1. M. H. Dalsaniya, D. Upadhyay, K. J. Kurzydłowskia, and D. Kurzydłowski, High-Pressure Stabilization of Open–Shell Bromine Fluorides, Phys. Chem. Chem. Phys., 2024 DOI: 10.1039/d3cp05020c
  2. 2023

  3. K. P. Hilleke, X. Wang, D. Luo, N. Geng, B. Wang, F. Belli, and E. Zurek, Structure, Stability, and Superconductivity of N-Doped Lutetium Hydrides at kbar Pressures, Phys. Rev. B 2023, 108, 014511 DOI: 10.1103/PhysRevB.108.014511
  4. B. Wang, K. P. Hilleke, X. Wang, D. N. Polsin, and E. Zurek, Topological Electride Phase of Sodium at High Pressures and Temperatures, Phys. Rev. B 2023, 107, 184101 DOI: 10.1103/PhysRevB.107.184101
  5. K. P. Hilleke, R. Franco, P. Pertierra, M. A. Salvado, E. Zurek, J. M. Recio, Preference For a Pressure-Induced 3D Structure After 1T-HfSe2, Materials Today Physics 2023, 36, 101152 DOI: 10.1016/j.mtphys.2023.101152
  6. B. Wang, K. P. Hilleke, S. Hajinazar, G. Frapper, and E. Zurek, Structurally Constrained Evolutionary Algorithm for the Discovery and Design of Metastable Phases, J. Chem. Theory Comput. 2023, 19, 21, 7960–7971 DOI: 10.1021/acs.jctc.3c00594
  7. S. Racioppi, M. Miao, and E. Zurek, Intercalating Helium into A-Site Vacant Perovskites, Chem. Mater. 2023, 35, 11, 4297–4310 DOI: 10.1021/acs.chemmater.3c00353
  8. 2022

  9. L. T. Nguyen and G. Makov, GeS Phases from First-Principles: Structure Prediction, Optical Properties, and Phase Transitions upon Compression, Cryst. Growth Des. 2022, 22, 4956−4969 DOI: 10.1021/acs.cgd.2c00497
  10. H. J. Yang, M. Redington, D. P. Miller, E. Zurek, M. Kim, C.-S. Yoo, S. Y. Lim, H. Cheong, S.-A. Chae, D. Ahn, and N. H. Hur, New Monoclinic Ruthenium Dioxide with Highly Selective Hydrogenation Activity, Catal. Sci. Technol., 2022, 12, 6556 DOI: 10.1039/d2cy00815g
  11. N. Geng, T. Bi, and E. Zurek, Structural Diversity and Superconductivity in S−P−H Ternary Hydrides under Pressure, J. Phys. Chem. C 2022, 126, 7208−7220 DOI: 10.1021/acs.jpcc.1c10976
  12. B. Wang, K. P. Hilleke, X. Wang, D. N. Polsin, and E. Zurek, Topological Electride Phase of Sodium at High Pressures and Temperatures, arXiv:2205.06251 (2022) DOI: arXiv.2205.06251
  13. Ł. Wolański, M. Metzelaars, J. V. Leusen, P. Kögerler, and W. Grochala, Structural Phase Transitions and Magnetic Superexchange in MIAgIIF3 Perovskites at High Pressure, Chem. Eur. J. 2022, 28, e202200712 DOI: 10.1002/chem.202200712
  14. J. Gawraczyński, Ł. Wolański, A. Grzelak, Z. Mazej, V. Struzhkin, and W. Grochala, Phase Transitions and Amorphization of M2AgF4 (M = Na, K, Rb) Compounds at High Pressure, Pressure. Crystals 2022, 12, 458 DOI: 10.3390/cryst12040458
  15. 2021

  16. D. Kurzydłowski, M. A. Kuzovnikovb, and M. Tkacz, High-pressure phase transition of AB3-type compounds: case of tellurium trioxide, RSC Adv., 2021, 11, 14316 DOI: 10.1039/d1ra02344f
  17. A. Vasylenko, J. Gamon, B. B. Duff, et al., Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry, Nat Commun 12, 5561 (2021) DOI: 10.1038/s41467-021-25343-7
  18. D. Kurzydłowski, A. Gajek, and Z. Mazej, NaZnF3 as a low-pressure analogue of MgSiO3, Phys. Rev. Materials 5, 113602 (2021) DOI: 10.1103/PhysRevMaterials.5.113602
  19. L. T. Nguyen and G. Makov, High-Pressure Phases of SnO and PbO: A Density Functional Theory Combined with an Evolutionary Algorithm Approach, Materials 2021, 14, 6552 DOI: 10.3390/ma14216552
  20. T. Bi, A. Shamp, T. Terpstra, R. J. Hemley, and E. Zurek, The Li–F–H ternary system at high pressures, J. Chem. Phys. 154, 124709 (2021) DOI: 10.1063/5.0041490
  21. K. P. Hilleke, T. Ogitsu, S. Zhang, and E. Zurek, Structural motifs and bonding in two families of boron structures predicted at megabar pressures, Phys. Rev. Mater. 5 (2021) 053605 DOI: 10.1103/PhysRevMaterials.5.053605
  22. D. Kurzydlowski, M. Derzsi, E. Zurek, and W. Grochala, Fluorides of Silver Under Large Compression, Chem. Eur. J. 27 (2021) 5536-5545 DOI: 10.1002/chem.202100028
  23. D. A. Domanski and W. Grochala, The fate of compound with AgF2: AgO stoichiometry—A theoretical study, J. Chem. Phys. 154, (2021) 204705 DOI: 10.1063/5.0049707
  24. D. A. Domanski, M. Derzsi, and W. Grochala, Theoretical study of ternary silver fluorides AgMF4 (M= Co, Ni, Cu) formation at pressures up to 20 GPa, RSC Adv. 11, (2021) 25801-25810 DOI: 10.1039/D1RA04970D
  25. 2020

  26. Y. Yan, T. Bi, N. Geng, X. Wang, and E. Zurek, A metastable CaSH3 phase composed of HS honeycomb sheets that is superconducting under pressure, J. Phys. Chem. Lett. 2020, 11, 22, 9629–9636 DOI: 10.1021/acs.jpclett.0c02299
  27. D. Kurzydlkowski, S. Kobyakov, Z. Mazej, S. B. Pillai, B. Chakraborty, and P. K. Jha, Unexpected persistence of cis-bridged chains in compressed AuF3, Chem. Commun. 56, (2020) 4902-4905 DOI: 10.1039/D0CC01374A
  28. W. Cui, T. Bi, J. Shi, Y. Li, H. Liu, E. Zurek, and R. J. Hemley, Route to high-Tc superconductivity via CH4-intercalated H3s hydride perovskites, Phys. Rev. B 101, (2020) 134504 DOI: 10.1103/PhysRevB.101.134504
  29. D. Kurzydlkowski, A. Oleksiak, S. B. Pillai, and P. K. Jha, High-Pressure Phase Transitions of Zinc Difluoride up to 55 GPa, Inorganic Chemistry 2020 59 (4), 2584-2593 DOI: 10.1021/acs.inorgchem.9b03553
  30. 2019

  31. P. Avery, X. Wang, C. Oses, E. Gossett, M. Proserpio, C. Toher, S. Cutarolo & E. Zurek, Predicting superhard materials via a machine learning informed evolutionary structure search, npj Comput. Mater. 5, (2019) 89 DOI: 10.1038/s41524-019-0226-8
  32. N. Geng, T. Bi, N. Zarifi, Y. Yan, and E. Zurek, NaxSy Binary Phases at 1 atm and Under Pressure, Crystals 2019, 9(9), 441 DOI: 10.3390/cryst9090441
  33. Z. Fu, T. Bi, S. Zhang, S. Chen, E. Zurek, D. Legut, T. C. Germann, T. Lookman, R. Zhang, Anchoring effect of distorted octahedra on the stability and strength of platinum metal pernitrides, Phys. Rev. Mater. 3.013603 (2019) DOI: 10.1103/PhysRevMaterials.3.013603
  34. 2018

  35. S. Singh, S. Char, D. L. V. K. Prasad, Ag-Au alloys BCS-like Superconductors?, arXiv:1812.09308 (2018) DOI: arXiv:1812.09308
  36. N. Zarifi, T. Bi, H. Liu, E. Zurek, Crystal Structures and Properties of Iron Hydrides at High Pressure, J. Phys. Chem. C. 122.42 (2018) pp. 24262-24269 DOI: 10.1021/acs.jpcc.8b06934
  37. A. K. Mishra, T. Muramatsu, H. Liu, Z. M. Geballe, M. Somayazulu, M. Ahart, M. Baldini, Y. Meng, E. Zurek, R. J. Hemley, New Calcium Hydrides with Mixed Atomic and Molecular Hydrogen, J. Phys. Chem. C. 122.34 (2018) pp. 19370-19378 DOI: 10.1021/acs.jpcc.8b05030
  38. N. Zarifi, H. Liu, J. S. Tse, E. Zurek, Crystal Structures and Electronic Properties of Xe-Cl Compounds at High Pressure, J. Phys. Chem. C. 122.5 (2018) pp. 2941-2950 DOI: 10.1021/acs.jpcc.7b10810
  39. X. Ye, N. Zarifi, E. Zurek, R. Hoffmann, N. Ashcroft, High Hydrides of Scandium under Pressure: Potential Superconductors, J. Phys. Chem. C. 122.11 (2018) pp. 6298-6309 DOI: 10.1021/acs.jpcc.7b12124
  40. D. Kurzydłowski, The Jahn-Teller Distortion at High Pressure: The Case of Copper Difluoride, Crystals 8.3 (2018) pp. 140 DOI: 10.3390/cryst8030140
  41. 2017

  42. R. Martoňák, D. Ceresoli, T. Kagayama, Y. Matsuda, Y. Yamada, E. Tosatti, High-pressure phase diagram, structural transitions, and persistent nonmetallicity of BaBiO3: Theory and experiment, Phys. Rev. Materials 1.023601 (2017) DOI: 10.1103/physrevmaterials.1.023601
  43. B. Eifert, M. Becker, C. T. Reindl, M. Giar, L. Zheng, A. Polity, Y. He, C. Heiliger, P. J. Klar, Raman studies of the intermediate tin-oxide phase, Phys. Rev. Materials 1.014602 (2017) DOI: 10.1103/physrevmaterials.1.014602
  44. O. Kohulák, R. Martoňák, New high-pressure phases of MoSe2 and MoTe2, Phys. Rev. B 95.5 (2017) DOI: 10.1103/PhysRevB.95.054105
  45. T. Bi, D. P. Miller, A. Shamp, E. Zurek, Superconducting Phases of Phosphorus Hydride Under Pressure: Stabilization via Mobile Molecular Hydrogen, Angew. Chem. Int. Ed. 56 (2017) pp. 10192-10195 DOI: 10.1002/ange.201701660
  46. 2016

  47. T. A. Engstrom, N. C. Yoder, V. H. Crespi, Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties, Astrophys. J. 18.2 (2016) pp. 183 DOI: 10.3847/0004-637X/818/2/183
  48. R. F. Zhang, X. D. Wen, D. Legut, Z. H. Fu, S. Veprek, E. Zurek, H. K. Mao, Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides, Scientific Reports 6.23088 (2016) DOI: 10.1038/srep23088
  49. Andreas Hermann, High-pressure phase transitions in rubidium and caesium hydroxides, Phys. Chem. Chem. Phys. 18 (2016) pp. 16527 DOI: 10.1039/c6cp03203f
  50. F. Capitani, M. Höppner, L. Malavasi, C. Marini, G. A. Artioli, M. Hanfland, P. Dore, L. Boeri, P. Postorino, Structural Evolution of Solid Phenanthrene at High Pressures, J. Phys. Chem. C. 120.26 (2016) pp. 14310–14316 DOI: 10.1021/acs.jpcc.6b04326
  51. Yuta Tsuji, Prasad L. V. K. Dasari, S. F. Elatresh, Roald Hoffmann, N. W. Ashcroft, Structural Diversity and Electron Confinement in Li4N: Potential for 0-D, 2-D, and 3-D Electrides, J. Am. Chem. Soc. 138.42 (2016) pp. 14108–14120 DOI: 10.1021/jacs.6b09067
  52. Dušan Plašienka, Roman Martoňák, Erio Tosatti, Creating new layered structures at high pressures: SiS2, Scientific Reports. 6.37694 (2016) DOI: 10.1038/srep37694
  53. Andreas Hermann, Mainak Mookherjee, High-pressure phase of brucite stable at Earth’s mantle transition zone and lower mantle conditions, Proc. Natl. Acad. Sci. U. S. A. 113.49 (2016) pp. 13971-13976 DOI: 10.1073/pnas.1611571113
  54. Andreas Hermann, Mariana Derzsi, Wojciech Grochala, Roald Hoffmann, AuO: Evolving from Dis- to Comproportionation and Back Again, Inorganic Chemistry 55.3 (2016) pp. 1278-1286 DOI: 10.1021/acs.inorgchem.5b02528
  55. Andrew Shamp, Tyson Terpstra, Tiange Bi, Zackary Falls, Patrick Avery, Eva Zurek, Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting?, Journal of American Chemical Society 138.6 (2016) pp. 1884-1892 DOI: 10.1021/jacs.5b10180
  56. 2015

  57. Andreas Hermann, Malcolm Guthrie, Richard J. Nelmes, John S. Loveday, Pressure-induced localisation of the hydrogen-bond network in KOH-VI, The Journal of Chemical Physics 143.24 (2015) pp. 244706 DOI: 10.1063/1.4938260
  58. Yangzheng Lin, Timothy A. Strobel, R. E. Cohen, Structural diversity in lithium carbides, Physical Review B 92.21 (2015) pp. 214106 DOI: 10.1103/PhysRevB.92.214106
  59. Mandy Bethkenhagen, Daniel Cebulla, Ronald Redmer, Sebastien Hamel, Superionic Phases of the 1:1 Water–Ammonia Mixture, The Journal of Physical Chemistry A 119.42 (2015) pp. 10582-10588 DOI: 10.1021/acs.jpca.5b07854
  60. Andrew Shamp, Eva Zurek, Superconducting High-Pressure Phases Composed of Hydrogen and Iodine, Journal of Physical Chemistry Letters 6.20 (2015) pp. 4067-4072 DOI: 10.1021/acs.jpclett.5b01839
  61. Oto Kohulák, Roman Martoňák, Erio Tosatti, High-pressure structure, decomposition, and superconductivity of MoS2, Physical Review B 91.14 (2015) pp. 144113 DOI: 10.1103/PhysRevB.91.144113
  62. Eva Zurek, Yansun Yao, Theoretical Predictions of Novel Superconducting Phases of BaGe3 Stable at Atmospheric and High Pressures, Inorganic chemistry 54.6 (2015) pp. 2875-2884 DOI: 10.1021/ic5030235
  63. Andrew Shamp, Patrick Saitta, Eva Zurek, Theoretical predictions of novel potassium chloride phases under pressure, Physical Chemistry Chemical Physics 17.18 (2015): 12265-12272 DOI: 10.1039/C5CP00470E
  64. 2014

  65. Patryk Zaleski-Ejgierd, High-pressure formation and stabilization of binary iridium hydrides, Physical Chemistry Chemical Physics 16.7 (2014) pp. 3220-3229 DOI: 10.1039/C3CP54300E
  66. James Hooper, Donna A. Kunkel, Scott Simpson, Sumit Beniwal, Axel Enders, Eva Zurek, Chiral surface networks of 3-HPLN—A molecular analog of rounded triangle assembly, Surface Science 629 (2014) pp. 65-74 DOI: 10.1016/j.susc.2014.04.015
  67. R. E. Cohen, Yangzheng Lin, Prediction of a potential high-pressure structure of FeSiO3, Physical Review B 90.14 (2014) pp. 140102 DOI: 10.1103/PhysRevB.90.140102
  68. Andreas Hermann, Peter Schwerdtfeger, Xenon Suboxides Stable under Pressure, The Journal of Physical Chemistry Letters 5.24 (2014) pp. 4336-4342 DOI: 10.1021/jz502230b
  69. Andreas Hermann, N. W. Ashcroft, Roald Hoffmann, Lithium hydroxide, LiOH, at elevated densities, Journal of Chemical Physics 141 (2014) pp. 024505 (1-11) DOI: 10.1063/1.4886335
  70. James Hooper, Tyson Terpstra, Andrew Shamp, Eva Zurek, Composition and Constitution of Compressed Strontium Polyhydrides, The Journal of Physical Chemistry C 118 (2014) pp. 6433-6447 DOI: 10.1021/jp4125342
  71. Khalid Alkaabi, Dasari L. V. K. Prasad, Peter Kroll, N. W. Ashcroft, Roald Hoffmann, Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous?, Journal of the American Chemical Society 136 (2014) pp. 3410-3423 DOI: 10.1021/ja409692c
  72. 2013

  73. Dasari, L. V. K. Prasad, N. W.Ashcroft, Roald Hoffmann, Evolving Structural Diversity and Metallicity in Compressed Lithium Azide, Journal of Physical Chemistry C 117 (2013) pp. 20838-20846 DOI: 10.1021/jp405905k
  74. Mariana Derzsi, Andreas Hermann, Roald Hoffmann, Wojciech Grochala, The Close Relationships between the Crystal Structures of MO and MSO4 (M = Group 10, 11, or 12 Metal), and the Predicted Structures of AuO and PtSO4, European Journal of Inorganic Chemistry 29 (2013) pp. 5094-5102 DOI: 10.1002/ejic.201300769
  75. Andreas Hermann, Hoffmann Roald, N. W. Ashcroft, Condensed Astatine: Monoatomic and Metallic, Physical Review Letters 111 (2013) pp. 116404 (1-5) DOI: 10.1103/PhysRevLett.111.116404
  76. Andreas Hermann, N. W. Ashcroft, Roald Hoffmann, Binary Compounds of Boron and Beryllium: A Rich Structural Arena with Space for Predictions, Chemistry-A European Journal 19 (2013) pp. 4184-4197 DOI: 10.1002/chem.201203890
  77. David C. Lonie, James Hooper, Bahadir Altintas, Eva Zurek, Metallization of magnesium polyhydrides under pressure, Physical Review B 87 (2013) pp. 054107-054114 DOI: 10.1103/PhysRevB.87.054107
  78. James Hooper, Bahadir Altintas, Andrew Shamp, Eva Zurek, Polyhydrides of the Alkaline Earth Metals: A Look at the Extremes under Pressure, The Journal of Physical Chemistry C 117 (2013) pp. 2982-2992 DOI: 10.1021/jp311571n
  79. 2012

  80. James Hooper, Eva Zurek, Rubidium Polyhydrides Under Pressure: Emergence of the Linear H-3(-) Species, Chemistry-A European Journal 18 (2012) pp. 5013-5021 DOI: 10.1002/chem.201103205
  81. James Hooper, Eva Zurek, High Pressure Potassium Polyhydrides: A Chemical Perspective, Journal of Physical Chemistry C 116 (2012) pp. 13322-13328 DOI: 10.1021/jp303024h
  82. Andreas Hermann, B. L. Ivanov, N. W. Ashcroft, Roald Hoffmann, LiBeB: A predicted phase with structural and electronic peculiarities, Physical Review B 86 (2012) pp. 014104 DOI:10.1103/PhysRevB.86.014104
  83. Andreas Hermann, N. W. Ashcroft, Roald Hoffmann, Making Sense of Boron-Rich Binary Be-B Phases, Inorganic Chemistry 51 (2012) pp. 9066-9075 DOI: 10.1021/ic301215y
  84. Andrew Shamp, James Hooper, Eva Zurek, Compressed Cesium Polyhydrides: Cs+ Sublattices and H-3(-) Three-Connected Nets, Inorganic Chemistry 51 (2012) pp. 9333-9342 DOI: 10.1021/ic301045v
  85. Dasari L. V. K. Prasad, N. W. Ashcroft, Roald Hoffmann, Lithium Amide (LiHN2) Under Pressure, Journal of Physical Chemistry A 116 (2012) pp. 10027-10036 DOI: 10.1021/jp3078387
  86. Andrea Hermann, Ainhoa Suarez-Alcubilla, Idoia Gurtubay, Li-Ming Yang, Aitor Bergara, N. W. Ashcroft, Roald Hoffmann, LiB and its boron-deficient variants under pressure, Physical Review B 86 (2012) pp. 144110 DOI:10.1103/PhysRevB.86.144110
  87. James Hooper, Eva Zurek, Lithium Subhydrides under Pressure and Their Superatom-like Building Blocks, Chem Plus Chem 77 (2012) pp. 969-972 DOI: 10.1002/cplu.201290047
  88. Andreas Hermann, Alexandra Mc Sorley, N. W. Ashcroft, Roald Hoffmann, From Wade-Mingos to Zintl-Klemm at 100 GPa: Binary Compounds of Boron and Lithium, Journal of the American Chemical Society 134 (2012) pp. 18606-18618 DOI:10.1021/ja308492g
  89. Patryk Zaleski-Ejgierd, Vanessa Labet, Timothy A Strobel, Roald Hoffmann, N.W. Ashcroft, WHn under pressure, Journal of Physics: Condensed Matter 24 (2012) 155701 DOI:10.1088/0953-8984/24/15/155701
  90. Andreas Hermann, N. W. Ashcroft, and Roald Hoffmann, High pressure ices, Proceedings of the National Academy of Sciences 109 (2012) pp. 745-750 DOI:10.1073/pnas.1118694109
  91. 2011

  92. Vanessa Labet, Roald Hoffmann, Neil W. Ashcroft, Molecular models for WH6 under pressure, New Journal of Chemistry 35 (2011) pp. 2349-2355 DOI:10.1039/c1nj20560a
  93. Xiao-Dong Wen, Roald Hoffmann, Neil W. Ashcroft, Benzene under High Pressure: a Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase, Journal of the American Chemical Society 133 (2011) pp. 9023-9035 DOI:10.1021/ja201786y
  94. James Hooper, Pio Baettig, Eva Zurek, Pressure Induced Structural Transitions in KH, RbH and CsH, Journal of Applied Physics, 111 (2012) pp. 112611 DOI:10.1063/1.4726210
  95. Pio Baettig, Eva Zurek, Pressure-Stabilized Sodium Polyhydrides: NaHn (n>1), Physical Review Letters, 2011;106(23) DOI:10.1103/PhysRevLett.106.237002
Back to Top ⇧