Publications
For information on how to cite XtalOpt in your own publications, please see the "How To Cite?" section below.
As a free software published under the "NEW" BSD license, we do not require co-authorship as a contractual obligation, nor do we request it. As the XtalOpt authors have not characterized or studied the chemical system in your application paper, we would consider such attribution unnecessary, perhaps even dishonest. A simple citation of the relevant articles is sufficient for most cases.
Moreover, XtalOpt's open-source license was chosen to encourage open collaboration and to lower the barrier to researchers interested in developing new predictive techniques.
We welcome contributions and encourage independent method improvement. If significant effort has been made by the XtalOpt authors to assist in implementing your technique,
we may request co-authorship. However, scholarly articles describing independent modifications to, improvements to, or characterization of the XtalOpt code may follow the same
citation guidelines as an application paper.
How To Cite?
If you use XtalOpt for the prediction of a new structure, please cite the implementation paper and the latest version announcement, i.e.,
- David C. Lonie, Eva Zurek, XtalOpt: An Open-Source Evolutionary Algorithm for Crystal Structure Prediction, Computer Physics Communications 182 (2011) pp. 372-387 DOI:10.1016/j.cpc.2010.07.048
- Samad Hajinazar, Eva Zurek, XtalOpt Version 13: Multi-Objective Evolutionary Search for Novel Functional Materials, Computer Physics Communications 304 (2024) 109306 DOI:10.1016/j.cpc.2024.109306
We also ask that you cite the RandSpg manuscript, if you employ this method for creating new random structures, and the XtalComp manuscript if you use this method for comparing the structures in your work.
Method Papers
Detailed Implementation Papers
The formalism and implementation of the multi-objective evolutionary search in XtalOpt can be found here:
- Samad Hajinazar, Eva Zurek, XtalOpt Version 13: Multi-Objective Evolutionary Search for Novel Functional Materials, Computer Physics Communications 304 (2024) 109306 DOI:10.1016/j.cpc.2024.109306 [preprint]
The following publication details the implementation of XtalOpt, examining NaH, TiO2, and SrTiO3 as benchmarking cases:
- David C. Lonie, Eva Zurek, XtalOpt: An Open-Source Evolutionary Algorithm for Crystal Structure Prediction, Computer Physics Communications 182 (2011) pp. 372-387 DOI: 10.1016/j.cpc.2010.07.048 [preprint]
This paper describes the duplicate matching algorithm used by XtalOpt, named XtalComp, which is an open-source code downloadable from its Github repository and has a public web interface.
- David C. Lonie, Eva Zurek, Identifying Duplicate Crystal Structures: XtalComp, an Open-Source Solution, Computer Physics Communications 183 (2012) pp. 690-697 DOI: 10.1016/j.cpc.2011.11.007 [preprint]
The following paper describes the open-source algorithm RandSpg, used by XtalOpt for the random symmetric initialization of crystals,
which can be obtained from its Github repository and has a public web interface.
- Patrick Avery, Eva Zurek, RandSpg: An open-source program for generating atomistic crystal structures with specific spacegroups, Computer Physics Communications 213 (2017) pp. 208-216 DOI: 10.1016/j.cpc.2016.12.005 [preprint]
A more recent overview of crystal structure prediction methods and new algorithm developments in XtalOpt is presented in the following article:
- Zackary Falls, Patrick Avery, Xiaoyu Wang, Katerina P. Hilleke, and Eva Zurek, The XtalOpt Evolutionary Algorithm for Crystal Structure Prediction, J. Phys. Chem. C 2021, 125, 3, 1601–1620 DOI: 10.1021/acs.jpcc.0c09531 [preprint]
New Version Announcements
- Version 13.0: Samad Hajinazar, Eva Zurek, XtalOpt Version 13: Multi-Objective Evolutionary Search for Novel Functional Materials, Computer Physics Communications 304 (2024) 109306 DOI: 101016/j.cpc.2024.109306 [preprint]
- Version r12.0: Patrick Avery, Cormac Toher, Stefano Curtarolo, Eva Zurek, XtalOpt version r12: An open-source evolutionary algorithm for crystal structure prediction, Computer Physics Communications 237 (2019) pp. 274-275 DOI: 10.1016/j.cpc.2018.11.016 [preprint]
- Version r11.0: Patrick Avery, Zackary Falls, Eva Zurek, XtalOpt version r11: An open-source evolutionary algorithm for crystal structure prediction, Computer Physics Communications 222 (2018) pp. 418-419 DOI: 10.1016/j.cpc.2017.09.011 [preprint]
- Version r10.0: Patrick Avery, Zackary Falls, Eva Zurek, XtalOpt Version r10: An Open-Source Evolutionary Algorithm for Crystal Structure Prediction, Computer Physics Communications 217 (2017) pp. 210-211 DOI: 10.1016/j.cpc.2017.04.001 [preprint]
- Version r9.0: Zackary Falls, David C. Lonie, Patrick Avery, Andrew Shamp, Eva Zurek, XtalOpt Version r9: An Open-Source Evolutionary Algorithm for Crystal Structure Prediction, Computer Physics Communications 199 (2016) pp. 178-179 DOI: 10.1016/j.cpc.2015.09.018 [preprint]
- Version r7.0: David C. Lonie, Eva Zurek, XtalOpt Version r7: An Open-Source Evolutionary Algorithm for Crystal Structure Prediction, Computer Physics Communications 182 (2011) pp. 2305-2306 DOI: 10.1016/j.cpc.2011.06.003 [preprint]
Applications
2024
- M. H. Dalsaniya, D. Upadhyay, K. J. Kurzydłowskia, and D. Kurzydłowski, High-Pressure Stabilization of Open–Shell Bromine Fluorides, Phys. Chem. Chem. Phys., 2024 DOI: 10.1039/d3cp05020c
2023
- K. P. Hilleke, X. Wang, D. Luo, N. Geng, B. Wang, F. Belli, and E. Zurek, Structure, Stability, and Superconductivity of N-Doped Lutetium Hydrides at kbar Pressures, Phys. Rev. B 2023, 108, 014511 DOI: 10.1103/PhysRevB.108.014511
- B. Wang, K. P. Hilleke, X. Wang, D. N. Polsin, and E. Zurek, Topological Electride Phase of Sodium at High Pressures and Temperatures, Phys. Rev. B 2023, 107, 184101 DOI: 10.1103/PhysRevB.107.184101
- K. P. Hilleke, R. Franco, P. Pertierra, M. A. Salvado, E. Zurek, J. M. Recio, Preference For a Pressure-Induced 3D Structure After 1T-HfSe2, Materials Today Physics 2023, 36, 101152 DOI: 10.1016/j.mtphys.2023.101152
- B. Wang, K. P. Hilleke, S. Hajinazar, G. Frapper, and E. Zurek, Structurally Constrained Evolutionary Algorithm for the Discovery and Design of Metastable Phases, J. Chem. Theory Comput. 2023, 19, 21, 7960–7971 DOI: 10.1021/acs.jctc.3c00594
- S. Racioppi, M. Miao, and E. Zurek, Intercalating Helium into A-Site Vacant Perovskites, Chem. Mater. 2023, 35, 11, 4297–4310 DOI: 10.1021/acs.chemmater.3c00353
2022
- L. T. Nguyen and G. Makov, GeS Phases from First-Principles: Structure Prediction, Optical Properties, and Phase Transitions upon Compression, Cryst. Growth Des. 2022, 22, 4956−4969 DOI: 10.1021/acs.cgd.2c00497
- H. J. Yang, M. Redington, D. P. Miller, E. Zurek, M. Kim, C.-S. Yoo, S. Y. Lim, H. Cheong, S.-A. Chae, D. Ahn, and N. H. Hur, New Monoclinic Ruthenium Dioxide with Highly Selective Hydrogenation Activity, Catal. Sci. Technol., 2022, 12, 6556 DOI: 10.1039/d2cy00815g
- N. Geng, T. Bi, and E. Zurek, Structural Diversity and Superconductivity in S−P−H Ternary Hydrides under Pressure, J. Phys. Chem. C 2022, 126, 7208−7220 DOI: 10.1021/acs.jpcc.1c10976
- B. Wang, K. P. Hilleke, X. Wang, D. N. Polsin, and E. Zurek, Topological Electride Phase of Sodium at High Pressures and Temperatures, arXiv:2205.06251 (2022) DOI: arXiv.2205.06251
- Ł. Wolański, M. Metzelaars, J. V. Leusen, P. Kögerler, and W. Grochala, Structural Phase Transitions and Magnetic Superexchange in MIAgIIF3 Perovskites at High Pressure, Chem. Eur. J. 2022, 28, e202200712 DOI: 10.1002/chem.202200712
- J. Gawraczyński, Ł. Wolański, A. Grzelak, Z. Mazej, V. Struzhkin, and W. Grochala, Phase Transitions and Amorphization of M2AgF4 (M = Na, K, Rb) Compounds at High Pressure, Pressure. Crystals 2022, 12, 458 DOI: 10.3390/cryst12040458
2021
- D. Kurzydłowski, M. A. Kuzovnikovb, and M. Tkacz, High-pressure phase transition of AB3-type compounds: case of tellurium trioxide, RSC Adv., 2021, 11, 14316 DOI: 10.1039/d1ra02344f
- A. Vasylenko, J. Gamon, B. B. Duff, et al., Element selection for crystalline inorganic solid discovery guided by unsupervised machine learning of experimentally explored chemistry, Nat Commun 12, 5561 (2021) DOI: 10.1038/s41467-021-25343-7
- D. Kurzydłowski, A. Gajek, and Z. Mazej, NaZnF3 as a low-pressure analogue of MgSiO3, Phys. Rev. Materials 5, 113602 (2021) DOI: 10.1103/PhysRevMaterials.5.113602
- L. T. Nguyen and G. Makov, High-Pressure Phases of SnO and PbO: A Density Functional Theory Combined with an Evolutionary Algorithm Approach, Materials 2021, 14, 6552 DOI: 10.3390/ma14216552
- T. Bi, A. Shamp, T. Terpstra, R. J. Hemley, and E. Zurek, The Li–F–H ternary system at high pressures, J. Chem. Phys. 154, 124709 (2021) DOI: 10.1063/5.0041490
- K. P. Hilleke, T. Ogitsu, S. Zhang, and E. Zurek, Structural motifs and bonding in two families of boron structures predicted at megabar pressures, Phys. Rev. Mater. 5 (2021) 053605 DOI: 10.1103/PhysRevMaterials.5.053605
- D. Kurzydlowski, M. Derzsi, E. Zurek, and W. Grochala, Fluorides of Silver Under Large Compression, Chem. Eur. J. 27 (2021) 5536-5545 DOI: 10.1002/chem.202100028
- D. A. Domanski and W. Grochala, The fate of compound with AgF2: AgO stoichiometry—A theoretical study, J. Chem. Phys. 154, (2021) 204705 DOI: 10.1063/5.0049707
- D. A. Domanski, M. Derzsi, and W. Grochala, Theoretical study of ternary silver fluorides AgMF4 (M= Co, Ni, Cu) formation at pressures up to 20 GPa, RSC Adv. 11, (2021) 25801-25810 DOI: 10.1039/D1RA04970D
2020
- Y. Yan, T. Bi, N. Geng, X. Wang, and E. Zurek, A metastable CaSH3 phase composed of HS honeycomb sheets that is superconducting under pressure, J. Phys. Chem. Lett. 2020, 11, 22, 9629–9636 DOI: 10.1021/acs.jpclett.0c02299
- D. Kurzydlkowski, S. Kobyakov, Z. Mazej, S. B. Pillai, B. Chakraborty, and P. K. Jha, Unexpected persistence of cis-bridged chains in compressed AuF3, Chem. Commun. 56, (2020) 4902-4905 DOI: 10.1039/D0CC01374A
- W. Cui, T. Bi, J. Shi, Y. Li, H. Liu, E. Zurek, and R. J. Hemley, Route to high-Tc superconductivity via CH4-intercalated H3s hydride perovskites, Phys. Rev. B 101, (2020) 134504 DOI: 10.1103/PhysRevB.101.134504
- D. Kurzydlkowski, A. Oleksiak, S. B. Pillai, and P. K. Jha, High-Pressure Phase Transitions of Zinc Difluoride up to 55 GPa, Inorganic Chemistry 2020 59 (4), 2584-2593 DOI: 10.1021/acs.inorgchem.9b03553
2019
- P. Avery, X. Wang, C. Oses, E. Gossett, M. Proserpio, C. Toher, S. Cutarolo & E. Zurek, Predicting superhard materials via a machine learning informed evolutionary structure search, npj Comput. Mater. 5, (2019) 89 DOI: 10.1038/s41524-019-0226-8
- N. Geng, T. Bi, N. Zarifi, Y. Yan, and E. Zurek, NaxSy Binary Phases at 1 atm and Under Pressure, Crystals 2019, 9(9), 441 DOI: 10.3390/cryst9090441
- Z. Fu, T. Bi, S. Zhang, S. Chen, E. Zurek, D. Legut, T. C. Germann, T. Lookman, R. Zhang, Anchoring effect of distorted octahedra on the stability and strength of platinum metal pernitrides, Phys. Rev. Mater. 3.013603 (2019) DOI: 10.1103/PhysRevMaterials.3.013603
2018
- S. Singh, S. Char, D. L. V. K. Prasad, Ag-Au alloys BCS-like Superconductors?, arXiv:1812.09308 (2018) DOI: arXiv:1812.09308
- N. Zarifi, T. Bi, H. Liu, E. Zurek, Crystal Structures and Properties of Iron Hydrides at High Pressure, J. Phys. Chem. C. 122.42 (2018) pp. 24262-24269 DOI: 10.1021/acs.jpcc.8b06934
- A. K. Mishra, T. Muramatsu, H. Liu, Z. M. Geballe, M. Somayazulu, M. Ahart, M. Baldini, Y. Meng, E. Zurek, R. J. Hemley, New Calcium Hydrides with Mixed Atomic and Molecular Hydrogen, J. Phys. Chem. C. 122.34 (2018) pp. 19370-19378 DOI: 10.1021/acs.jpcc.8b05030
- N. Zarifi, H. Liu, J. S. Tse, E. Zurek, Crystal Structures and Electronic Properties of Xe-Cl Compounds at High Pressure, J. Phys. Chem. C. 122.5 (2018) pp. 2941-2950 DOI: 10.1021/acs.jpcc.7b10810
- X. Ye, N. Zarifi, E. Zurek, R. Hoffmann, N. Ashcroft, High Hydrides of Scandium under Pressure: Potential Superconductors, J. Phys. Chem. C. 122.11 (2018) pp. 6298-6309 DOI: 10.1021/acs.jpcc.7b12124
- D. Kurzydłowski, The Jahn-Teller Distortion at High Pressure: The Case of Copper Difluoride, Crystals 8.3 (2018) pp. 140 DOI: 10.3390/cryst8030140
2017
- R. Martoňák, D. Ceresoli, T. Kagayama, Y. Matsuda, Y. Yamada, E. Tosatti, High-pressure phase diagram, structural transitions, and persistent nonmetallicity of BaBiO3: Theory and experiment, Phys. Rev. Materials 1.023601 (2017) DOI: 10.1103/physrevmaterials.1.023601
- B. Eifert, M. Becker, C. T. Reindl, M. Giar, L. Zheng, A. Polity, Y. He, C. Heiliger, P. J. Klar, Raman studies of the intermediate tin-oxide phase, Phys. Rev. Materials 1.014602 (2017) DOI: 10.1103/physrevmaterials.1.014602
- O. Kohulák, R. Martoňák, New high-pressure phases of MoSe2 and MoTe2, Phys. Rev. B 95.5 (2017) DOI: 10.1103/PhysRevB.95.054105
- T. Bi, D. P. Miller, A. Shamp, E. Zurek, Superconducting Phases of Phosphorus Hydride Under Pressure: Stabilization via Mobile Molecular Hydrogen, Angew. Chem. Int. Ed. 56 (2017) pp. 10192-10195 DOI: 10.1002/ange.201701660
2016
- T. A. Engstrom, N. C. Yoder, V. H. Crespi, Crystal chemistry of three-component white dwarfs and neutron star crusts: phase stability, phase stratification, and physical properties, Astrophys. J. 18.2 (2016) pp. 183 DOI: 10.3847/0004-637X/818/2/183
- R. F. Zhang, X. D. Wen, D. Legut, Z. H. Fu, S. Veprek, E. Zurek, H. K. Mao, Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides, Scientific Reports 6.23088 (2016) DOI: 10.1038/srep23088
- Andreas Hermann, High-pressure phase transitions in rubidium and caesium hydroxides, Phys. Chem. Chem. Phys. 18 (2016) pp. 16527 DOI: 10.1039/c6cp03203f
- F. Capitani, M. Höppner, L. Malavasi, C. Marini, G. A. Artioli, M. Hanfland, P. Dore, L. Boeri, P. Postorino, Structural Evolution of Solid Phenanthrene at High Pressures, J. Phys. Chem. C. 120.26 (2016) pp. 14310–14316 DOI: 10.1021/acs.jpcc.6b04326
- Yuta Tsuji, Prasad L. V. K. Dasari, S. F. Elatresh, Roald Hoffmann, N. W. Ashcroft, Structural Diversity and Electron Confinement in Li4N: Potential for 0-D, 2-D, and 3-D Electrides, J. Am. Chem. Soc. 138.42 (2016) pp. 14108–14120 DOI: 10.1021/jacs.6b09067
- Dušan Plašienka, Roman Martoňák, Erio Tosatti, Creating new layered structures at high pressures: SiS2, Scientific Reports. 6.37694 (2016) DOI: 10.1038/srep37694
- Andreas Hermann, Mainak Mookherjee, High-pressure phase of brucite stable at Earth’s mantle transition zone and lower mantle conditions, Proc. Natl. Acad. Sci. U. S. A. 113.49 (2016) pp. 13971-13976 DOI: 10.1073/pnas.1611571113
- Andreas Hermann, Mariana Derzsi, Wojciech Grochala, Roald Hoffmann, AuO: Evolving from Dis- to Comproportionation and Back Again, Inorganic Chemistry 55.3 (2016) pp. 1278-1286 DOI: 10.1021/acs.inorgchem.5b02528
- Andrew Shamp, Tyson Terpstra, Tiange Bi, Zackary Falls, Patrick Avery, Eva Zurek, Decomposition Products of Phosphine Under Pressure: PH2 Stable and Superconducting?, Journal of American Chemical Society 138.6 (2016) pp. 1884-1892 DOI: 10.1021/jacs.5b10180
2015
- Andreas Hermann, Malcolm Guthrie, Richard J. Nelmes, John S. Loveday, Pressure-induced localisation of the hydrogen-bond network in KOH-VI, The Journal of Chemical Physics 143.24 (2015) pp. 244706 DOI: 10.1063/1.4938260
- Yangzheng Lin, Timothy A. Strobel, R. E. Cohen, Structural diversity in lithium carbides, Physical Review B 92.21 (2015) pp. 214106 DOI: 10.1103/PhysRevB.92.214106
- Mandy Bethkenhagen, Daniel Cebulla, Ronald Redmer, Sebastien Hamel, Superionic Phases of the 1:1 Water–Ammonia Mixture, The Journal of Physical Chemistry A 119.42 (2015) pp. 10582-10588 DOI: 10.1021/acs.jpca.5b07854
- Andrew Shamp, Eva Zurek, Superconducting High-Pressure Phases Composed of Hydrogen and Iodine, Journal of Physical Chemistry Letters 6.20 (2015) pp. 4067-4072 DOI: 10.1021/acs.jpclett.5b01839
- Oto Kohulák, Roman Martoňák, Erio Tosatti, High-pressure structure, decomposition, and superconductivity of MoS2, Physical Review B 91.14 (2015) pp. 144113 DOI: 10.1103/PhysRevB.91.144113
- Eva Zurek, Yansun Yao, Theoretical Predictions of Novel Superconducting Phases of BaGe3 Stable at Atmospheric and High Pressures, Inorganic chemistry 54.6 (2015) pp. 2875-2884 DOI: 10.1021/ic5030235
- Andrew Shamp, Patrick Saitta, Eva Zurek, Theoretical predictions of novel potassium chloride phases under pressure, Physical Chemistry Chemical Physics 17.18 (2015): 12265-12272 DOI: 10.1039/C5CP00470E
2014
- Patryk Zaleski-Ejgierd, High-pressure formation and stabilization of binary iridium hydrides, Physical Chemistry Chemical Physics 16.7 (2014) pp. 3220-3229 DOI: 10.1039/C3CP54300E
- James Hooper, Donna A. Kunkel, Scott Simpson, Sumit Beniwal, Axel Enders, Eva Zurek, Chiral surface networks of 3-HPLN—A molecular analog of rounded triangle assembly, Surface Science 629 (2014) pp. 65-74 DOI: 10.1016/j.susc.2014.04.015
- R. E. Cohen, Yangzheng Lin, Prediction of a potential high-pressure structure of FeSiO3, Physical Review B 90.14 (2014) pp. 140102 DOI: 10.1103/PhysRevB.90.140102
- Andreas Hermann, Peter Schwerdtfeger, Xenon Suboxides Stable under Pressure, The Journal of Physical Chemistry Letters 5.24 (2014) pp. 4336-4342 DOI: 10.1021/jz502230b
- Andreas Hermann, N. W. Ashcroft, Roald Hoffmann, Lithium hydroxide, LiOH, at elevated densities, Journal of Chemical Physics 141 (2014) pp. 024505 (1-11) DOI: 10.1063/1.4886335
- James Hooper, Tyson Terpstra, Andrew Shamp, Eva Zurek, Composition and Constitution of Compressed Strontium Polyhydrides, The Journal of Physical Chemistry C 118 (2014) pp. 6433-6447 DOI: 10.1021/jp4125342
- Khalid Alkaabi, Dasari L. V. K. Prasad, Peter Kroll, N. W. Ashcroft, Roald Hoffmann, Silicon Monoxide at 1 atm and Elevated Pressures: Crystalline or Amorphous?, Journal of the American Chemical Society 136 (2014) pp. 3410-3423 DOI: 10.1021/ja409692c
2013
- Dasari, L. V. K. Prasad, N. W.Ashcroft, Roald Hoffmann, Evolving Structural Diversity and Metallicity in Compressed Lithium Azide, Journal of Physical Chemistry C 117 (2013) pp. 20838-20846 DOI: 10.1021/jp405905k
- Mariana Derzsi, Andreas Hermann, Roald Hoffmann, Wojciech Grochala, The Close Relationships between the Crystal Structures of MO and MSO4 (M = Group 10, 11, or 12 Metal), and the Predicted Structures of AuO and PtSO4, European Journal of Inorganic Chemistry 29 (2013) pp. 5094-5102 DOI: 10.1002/ejic.201300769
- Andreas Hermann, Hoffmann Roald, N. W. Ashcroft, Condensed Astatine: Monoatomic and Metallic, Physical Review Letters 111 (2013) pp. 116404 (1-5) DOI: 10.1103/PhysRevLett.111.116404
- Andreas Hermann, N. W. Ashcroft, Roald Hoffmann, Binary Compounds of Boron and Beryllium: A Rich Structural Arena with Space for Predictions, Chemistry-A European Journal 19 (2013) pp. 4184-4197 DOI: 10.1002/chem.201203890
- David C. Lonie, James Hooper, Bahadir Altintas, Eva Zurek, Metallization of magnesium polyhydrides under pressure, Physical Review B 87 (2013) pp. 054107-054114 DOI: 10.1103/PhysRevB.87.054107
- James Hooper, Bahadir Altintas, Andrew Shamp, Eva Zurek, Polyhydrides of the Alkaline Earth Metals: A Look at the Extremes under Pressure, The Journal of Physical Chemistry C 117 (2013) pp. 2982-2992 DOI: 10.1021/jp311571n
2012
- James Hooper, Eva Zurek, Rubidium Polyhydrides Under Pressure: Emergence of the Linear H-3(-) Species, Chemistry-A European Journal 18 (2012) pp. 5013-5021 DOI: 10.1002/chem.201103205
- James Hooper, Eva Zurek, High Pressure Potassium Polyhydrides: A Chemical Perspective, Journal of Physical Chemistry C 116 (2012) pp. 13322-13328 DOI: 10.1021/jp303024h
- Andreas Hermann, B. L. Ivanov, N. W. Ashcroft, Roald Hoffmann, LiBeB: A predicted phase with structural and electronic peculiarities, Physical Review B 86 (2012) pp. 014104 DOI:10.1103/PhysRevB.86.014104
- Andreas Hermann, N. W. Ashcroft, Roald Hoffmann, Making Sense of Boron-Rich Binary Be-B Phases, Inorganic Chemistry 51 (2012) pp. 9066-9075 DOI: 10.1021/ic301215y
- Andrew Shamp, James Hooper, Eva Zurek, Compressed Cesium Polyhydrides: Cs+ Sublattices and H-3(-) Three-Connected Nets, Inorganic Chemistry 51 (2012) pp. 9333-9342 DOI: 10.1021/ic301045v
- Dasari L. V. K. Prasad, N. W. Ashcroft, Roald Hoffmann, Lithium Amide (LiHN2) Under Pressure, Journal of Physical Chemistry A 116 (2012) pp. 10027-10036 DOI: 10.1021/jp3078387
- Andrea Hermann, Ainhoa Suarez-Alcubilla, Idoia Gurtubay, Li-Ming Yang, Aitor Bergara, N. W. Ashcroft, Roald Hoffmann, LiB and its boron-deficient variants under pressure, Physical Review B 86 (2012) pp. 144110 DOI:10.1103/PhysRevB.86.144110
- James Hooper, Eva Zurek, Lithium Subhydrides under Pressure and Their Superatom-like Building Blocks, Chem Plus Chem 77 (2012) pp. 969-972 DOI: 10.1002/cplu.201290047
- Andreas Hermann, Alexandra Mc Sorley, N. W. Ashcroft, Roald Hoffmann, From Wade-Mingos to Zintl-Klemm at 100 GPa: Binary Compounds of Boron and Lithium, Journal of the American Chemical Society 134 (2012) pp. 18606-18618 DOI:10.1021/ja308492g
- Patryk Zaleski-Ejgierd, Vanessa Labet, Timothy A Strobel, Roald Hoffmann, N.W. Ashcroft, WHn under pressure, Journal of Physics: Condensed Matter 24 (2012) 155701 DOI:10.1088/0953-8984/24/15/155701
- Andreas Hermann, N. W. Ashcroft, and Roald Hoffmann, High pressure ices, Proceedings of the National Academy of Sciences 109 (2012) pp. 745-750 DOI:10.1073/pnas.1118694109
2011
- Vanessa Labet, Roald Hoffmann, Neil W. Ashcroft, Molecular models for WH6 under pressure, New Journal of Chemistry 35 (2011) pp. 2349-2355 DOI:10.1039/c1nj20560a
- Xiao-Dong Wen, Roald Hoffmann, Neil W. Ashcroft, Benzene under High Pressure: a Story of Molecular Crystals Transforming to Saturated Networks, with a Possible Intermediate Metallic Phase, Journal of the American Chemical Society 133 (2011) pp. 9023-9035 DOI:10.1021/ja201786y
- James Hooper, Pio Baettig, Eva Zurek, Pressure Induced Structural Transitions in KH, RbH and CsH, Journal of Applied Physics, 111 (2012) pp. 112611 DOI:10.1063/1.4726210
- Pio Baettig, Eva Zurek, Pressure-Stabilized Sodium Polyhydrides: NaHn (n>1), Physical Review Letters, 2011;106(23) DOI:10.1103/PhysRevLett.106.237002
Back to Top ⇧